
IEEE TFAAS Newsletter – Issue 3 (Feb/Mar 2006) – Letters
(c) 2006 IEEE Computer Society – Task Force on Autonomous and Autonomic Systems
http://tab.computer.org/aas/

Foundations of Autonomic Computing Development

Sam Lightstone
Senior Technical Staff Member, Development Manager,

DB2 Autonomic Computing Development
DB2 Universal Database

IBM Canada Ltd., 8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

light@ca.ibm.com

Abstract

The complexity of modern middleware, and

software solutions, is growing at an exponential rate.
Only self-managing, or autonomic computing
technology can reasonably stem the confusion this
complexity brings to bear on human administrators.
While much has been published on “architecture” and
“function” for producing such systems, little has been
written about the engineering of self-managing systems
as a distinct paradigm. In this paper we suggest a
straw-man for engineering of autonomic systems that
is based on two essential tracks: a set of engineering
principles that should guide the planning of autonomic
systems and their interfaces and secondly a set of
mathematical foundations upon which such systems
can best be constructed. These foundational attributes
are intended to guide the thinking of R&D
organizations pursuing the development of autonomic
computing capability. The role of architecture and
standards is also discussed, highlighting their role in
inter-component management.

Introduction

Autonomic Computing [1] has emerged as a
paradigm for self managing IT systems to stem the tide
of rapidly increasing administration costs in the face of
rising IT system complexity [2][3][4][5]. The
development of self managing systems posses special
challenges to research and development teams. This
article is based on part of a Keynote talk given at
EASe’06 [20] and explores seven development
principles for successful engineering of autonomic

computing systems and key foundational techniques
currently in use.

Little has been published concerning the unique
challenges to development teams working on
autonomic computing problems. Autonomic, zero
admin, self-managing, embedded, invisible. These are
all (somewhat) synonymous adjectives for systems that
requires zero or little human administration. It’s where
the open server market is aggressively moving,
particularly for middleware components. Self-
managing middleware begins with an application view
that drives all subsequent requirements for design,
build, deployment, operations and change management.
As TCO is dominated by human costs, autonomic
computing is the primary path to dramatically reduced
TCO.

The timeline of ownership for an IT system is
illustrated in Figure 1. We describe the timeline of
ownership as having five stages. The ownership
process begins with an assessment of requirements for
capital investment and capacity planning. In the next
phase the system is designed. Thirdly the system is
constructed, tested and tuned. Fourthly, the system
goes into production and daily tuning and object
administration takes place. Finally, in the last stage
changes are made affecting the application or the
database server directly.

Figure 1 Administrative timeline of ownership

A brief analysis of the complexity of modern

systems highlights the extent of the problem clearly. In

a brief examination of 3 popular middleware products
produced by different companies, we observed the
number of configuration/registry parameters ranged
from 384 to 1200. These parameters were used to
specify everything from memory configuration to
connection and process limits. Many of the parameters
have a dynamic range of potential values (for example,
memory is often configurable in increments of 1, 4, or
1024 kilobytes) having thousands of possible
configurable values. The most extreme simplification
of the configuration space considers each configuration
parameter as having a binary setting (ON/OFF or
TRUE/FALSE etc). Using this gross
oversimplification, the possible configurations for a
product with 384 parameters is 10115 while a product
having 1200 binary parameters would have 10361
configurations. These numbers are monstrous, far
beyond the ability of human beings to assess. It’s
sobering to compare the complexity of possible
configurations of middleware components to another
metric: the latest estimates for the number of atoms in
the universe. Consider for a moment that the known
universe contains several hundred billion galaxies, each
with roughly one hundred billions of stars.
Astrophysicists estimate the upper bound on the
number of atoms in the universe1 to be 1081, many
orders of magnitude less than the number of ways one
can configure the three middleware products we have
studied, even with dramatic oversimplifying
assumptions.

Figure 2 A spiral galaxy, with more than one

hundred billion stars. The universe contains billions
of galaxies

Clearly, even with gross simplifying assumption,
modern middleware has many orders of magnitude
(trillions upon trillions) more possible configurations
than the number of atoms in the universe. This
observation leads to two conclusions:

1 Current estimates are in the range of 1063 to 1081. We have

assumed a worst case here to strengthen the argument.

1. Computer systems of reasonable complexity can
never be perfectly optimized.

2. Given that such computer systems can never be
perfectly optimized, self managing systems
should strive for “adequate” and “near optimal”
administration.

These observations give rise to the obvious question
“how good is adequate and how near is near optimal?”.
We believe that in the case of autonomic system the
answer to these questions is “as good as most skilled
human administrators”. This answer flows from the fact
that the goal of autonomic computing is the reduction
of Total Cost of Ownership (TCO) to reduce the
exploding complexity of modern systems. The
reduction in TCO provides the business case for the
investment in autonomic computing, by avoiding a
corresponding explosive growth in labor costs to
administer the growing complexity. Since cost of
incremental (not current) professional IT labor is the
proposed saving it follows that in order to achieve this
saving autonomic system must achieve results similar
to the incremental human talent that would be their
alternative. Much like the universe itself, the
development of autonomic computing systems will
depend on a broad set of conceptual domains.
Autonomic system, by the nature of their vast
complexity, cannot be developed using a narrow
selection of computer science techniques, such as those
provided from a single domain like artificial
intelligence. Techniques form control theory,
economics, social dynamics, and other fields have
already shown their merit. The breadth and challenge
of autonomic computing also exacerbates a number of
classical pressures on development organizations, such
as the difficulty in constraining an engineering R&D
team to a solution that is sufficient to satisfy a business
requirement, though far from complete.

Through the remainder of this paper we describe a
foundation for the development of autonomic
computing systems along two lines. First, we introduce
a set of software engineering principles, and second
present a short survey of foundational techniques that
appear to be dominant in the development of
autonomic computing capabilities.

2. A software engineering foundation

The following seven guiding principles should guide
strategic thinking on TCO reduction, and represent the
basic thesis of this paper. Each of the seven will be
elaborated on below. There are of course many more
than 7 design principles that designers and software

engineers ought to keep in mind during the
development of autonomic computing components and
systems. However, seven is in fact a nice round
number, and just small enough for most of us to keep in
mind. An exhaustive list, while perhaps more
satisfying and academically rigorous would not be in
fact practical. It’s also worth bearing in mind that
autonomic computing is to a large part a software
oriented discipline which inherits the design goals and
requirements of all good software (encapsulation,
reliability, reuse, etc). The following are additional
software engineering guidelines that appear to be
particularly applicable to the development of successful
autonomic computing projects.

#1 Build what users need, not what’s cool.

One of the major challenges to development teams

building autonomic computing technology is
surprisingly that autonomic systems are too much fun.
This sounds ridiculous at first glance, and not
particularly unique to autonomic computing systems. In
fact almost everyone who has worked on autonomic
systems (much like cybernetic systems) has faced the
excitement and the pull to make the system a little more
adaptive, and a little more intelligent. In many cases the
added sophistication is not needed, and adds only to
code complexity. Moreover, there are many cases
within industrial software where entire features appear
to have been implemented where a few heuristics
would have sufficed.

#2 Always give the user “an out”. Features
providing system automation must have an off
switch.

There are two issues that motivate this rule. Firstly

that despite the best technology, using feedback control
systems and wonderful mathematical optimization,
there will always be cases where the autonomic
technology does not work perfectly. Poor control can
occur because of either inadequate modeling or due to
software defects. Either way, when the autonomic
computing fails, the user must have an option to disable
it. This is particularly true for mission critical systems.

The second consideration is one of trust. Trust in
self-managing system is the subject of ongoing
research. How we can build trust in autonomic
technology is important because without trust, however
good the technology is, it will no be used. In fact,
without the option to disable the technology, many
System Administrators and DBA managers will
consciously decide not to purchase technology if it

can’t be trusted and can’t be disabled. Peter Coffee
wrote an article on this in 2004 speaking directly to this
point [7]. He notes:

“But our confidence that vendors will do things
right must increase before we let them do things
without our knowledge or control....

Building systems that scrutinize themselves, with
mechanisms for graceful degradation or, ideally,
for self-repair, is an idea whose time has clearly
come. I'd rather have brains in the loop, but
perhaps technology is on the verge of being as
good—and, certainly, much less expensive.”

#3 Features must be on by default in order for
the majority of users to exploit them.

In a number of informal studies at IBM we have

found that the major inhibitor to customer adoption of
autononmic computing features is simply lack of
awareness. More specifically, the vast majority of
customer don’t know features exist (any feature, not
just the autonomic computing features), and discover
them on as is needed basis. For every product there will
always be a small subset of power users who have an
extraordinarily broad awareness of product features.
The power users are in fact the group most aware of
autonomic computing features, and also the group least
likely to use (and in fairness, least in need of)
autonomic computing technology. This poses a serious
threat to autonomic computing adoption designed for
two audiences: one that desperately needs it and has
never heard of it, and another that moderately needs it
and doesn’t want it. The challenge is not dissimilar to
the introduction of the automatic transmission
automobile. Fully automatic transmission was
introduced in 1939 by Oldsmobile, however it was not
until the mid 1950’s that automatic transmission
automobiles where dominant family cars, a lapse of
roughly 15 years. Standard (manual) transmission cars
remain popular today despite the higher repair costs
and only slightly reduced fuel consumption. The
adoption of automatic transmission was likely hindered
by similar factors facing autonomic computing: the
novices don’t know about it and the enthusiast doesn’t
want it. The solution is to enable, where possible,
autonomic computing features by default. This allows
the normal user to reap the benefits of the technology
without reading every aspect of the product
documentation, while still giving the power user a
deliberate choice.

#4 Never force the user to make a choice that
your developers could not.

Unfortunately, there are too many cases in the

software world where a development team, unable to
determine a reasonable setting for a variable that was
crucial to system performance opted to make the
setting a “user configurable parameter”. This happens
frequently when the correct value for a variable is “it
depends”. While development schedules may
temporarily prevent the autonomic resolution of these
kinds of “it depends” variables, over the long run
eliminating these kinds of parameters is a key objective
for autonomic systems. The reason is simple: the
development team that designed and coded the system
didn’t know how to set the parameter it is certain that
the vast majority of end users certainly won’t. Foisting
the problems of the development team onto
unsuspecting users (in this case system administrators)
is a losing strategy.

#5 Autonomic computing technology must
work in real world scenarios.

Another negative habit that has become rampant in

the industry is the design and evaluation of autonomic
solutions around benchmarking systems. Industry
standard benchmarks are frequently used to assess the
performance or recoverability of systems. The use of
benchmarks is, in fact, a reasonable industry strategy.
However, the vast majority of these benchmarks are
extremely well behaved and non adaptive.
Development teams often use benchmark systems to
evaluate autonomic features because the benchmark
system provides a well understood workload and
performance baseline against which to pit the talents of
a newly created autonomic feature. However,
production systems are notoriously more complex and
variable than benchmark systems. As a result, the
success of autonomic technology with benchmark
systems, while meaningful, is not adequate.

#6 Never automatically undo or contradict the
explicit choices of the administrator /
application(s).

Autonomic systems typically execute a cycle of

monitoring, analyzing, planning and execution. The
analysis and planning will in many cases conclude that
a system state change (modification of resource, or
system design) should be made which contradicts or
replaces the deliberate system choices of a human

administrator or system designer. Ideally a perfect
autonomic system would always recommend such
changes where they were certain to improve on the
human choices. In reality there are several serious
considerations why overriding the deliberate choices of
humans is a march of folly. First, because the quality of
autonomic computing technology is not mature enough
to ensure the quality of the decision of the autonomic
computing system is superior to a deliberate human
choice. Second, because the purpose of autonomic
computing is the reduce TCO by obviating the
incremental cost of administration caused by increasing
system complexity. Once a human administrator has
made a choice, however suboptimal, the system can be
reasonably assumed to be in “acceptable” state in that
dimension, and incremental improvement – even
dramatic improvements – over the human design are
not necessarily needed. Thirdly because computer
systems by their nature are very good at optimizing
problems within a constrained search space. The
choices of human beings are often superior because of
the ability of human beings to observe broader
environments than any single component within a
system can observe. Human beings understand the big
picture where computers often do not. The ability of
the administrator to understand the larger system means
that if he/she has taken the time to manually intervene
there are probably good reasons for that decision even
if the autonomic components of the system can’t detect
them. Fourth, because even if the previous three
reasons were wrong, it is unwise to tell your owner that
he is doing a bad job. As a result, it follows that an
important aspect of autonomic systems is that they
distinguish between system changes made by human
operators and systems changes made by the autonomic
technology itself, so that changes performed by humans
will not be overridden.

#7 Minimize policy and keep it human

Architectures support policy, and functions consume

policy, but neither functions nor architecture
intrinsically need policy. Policy specification is in fact
the specification by human administrators what the
system could not glean on its own. Numerous policy
grammars and specifications have been proposed over
the past 30 years. The ultimate goal of autonomic
systems should be to entirely eliminate the need for
explicitly specified policy. However, that objective is
more than a decade away. What we can say about the
need for policy is therefore the following:
1. It is needed and will be needed for the next

several years.

2. Policy should represent business objectives that
can be described in relatively human terms,
indicating what is expected of a system. Policy
expression is not an excuse to inject
configuration parameters and rules into an
autonomic system.

3. In a world where policy remains, perhaps the
most important attribute of policy is its
standardization. Standardization more than
anything else will lead to the easy combination
of system components, and reusable
components. Sadly today, “The nice thing about
standards is that there are so many of them to
choose from” (attributed to Andrew S.
Tanenbaum).

3. Foundational Techniques

Autonomic computing is the term used for self-

managing IT systems. Numerous publications over the
past five years have shown how such self managing
systems can draw on a wide range of disciplines. A
short list, which research and development teams are
encouraged to explore in the design of autonomic
computing solutions includes: artificial intelligence,
operations research, cybernetics, polycontexturality,
second-order cybernetics, catastrophe theory,
connectionism, control theory (digital, analog,
closed/open loop), mathematical optimization, decision
theory, game theory, information theory, semiotics,
synergetics, sociosynergetics, and systems theory.
However, the vast majority of development projects
aimed at production use for the IT industry for storage
systems, databases, web servers, network
infrastructure, telephony, and self healing have focused
on seven foundational approaches.

3.1 Autonomic computing as dependency
management

Dependency management, modeled in various ways,
but most commonly through mathematical graphs, has
become a common domain in autonomic computing,
particular for managing dependencies during system
install [6]. The dependency management becomes
particularly complex when installing numerous
components onto an existing system with various
different prerequisites and co-requisites.

Figure 3 State transition graph for installable units

3.2 Autonomic computing as an expert system

Although the term expert system has a broad range

of meanings, in this context we use the term
specifically to refer to a system with a rule based or
heuristic decision making infrastructure. Such systems
typically use a knowledge base of known events or
symptoms in combination with an inference engine.
Numerous expert systems have been created for
autonomic computing. A small expert system was
shown to have significant value as a autonomic
computing feature within the database domain to
perform system configuration over several dozen
tuning parameters [11]. There are several emerging
examples as well for capacity planning to project the
capital requirements of new systems based on expected
users, throughput requirements and workload type.

Similarly, knowledge based expert systems have
been proposed to detect and match problems within a
complex solution stack (based on the assumption that
the majority of problems encountered by customers are
not unique). This is a particularly complex problem
within a complex solution stack where each component
within the stack has possibly been development by a
distinct development team, and there is no certain
correlation between the version levels of the various
components when an error event occurs.

Figure 4 Enterprise solution stack

http://www.quotationspage.com/quote/473.html
http://www.quotationspage.com/quote/473.html

3.3 Autonomic computing as tradeoff
elimination

The characterization of trade-off elimination as a

discipline for autonomic computing development
appears in a SIGMOD 2005 tutorial on self managing
databases chaired by Chaudhuri and Weikum [4].
Chaudhuri et al give the example of cache replacement
strategies, a classic self tuning problem. The two
standard techniques are LRU and LFU. LRU drops the
page that has been least recently used. LFU drops the
page that has been least frequently used. Each
algorithm has advantages. LFU is optimal for static
access probabilities, but has no aging.

LRU is optimal if last access is indicative for next
future access. Therefore, the choice of page
replacement algorithms becomes tradeoff between
recency vs. frequency, unless a compromise can be
found that is “adequate” for both classes of use. An
example of one such compromise strategy is LRU-k.
LRU-k: drops the page with the oldest k-th last
reference, and has been shown to have balanced page
replacement for both recency and frequency.

 (1)
Many problems in autonomic system management

can best be approached as a search for a compromise
that performs acceptably in the required environments
rather than attempting to build an adaptive solution that
toggles between multiple models by detecting the
current environment; the later being naturally more
error prone.

3.4 Autonomic computing as static
optimization

Static optimization techniques have been widely

used for autonomic computing technologies related to
capacity planning, physical system design, and resource
configuration. Standard techniques have included
mathematical optimization, what-if analysis, and a slew
of AI-related search schemes (greedy search, random
search, dynamic programming with branch and bound,
genetic algorithms, neural networks, simulated
annealing, and many others). Notably, a number of
impressive claims have been published in the database
domain where static analysis has been used by several
vendors in combination with mathematical modeling of
resource consumption re-using the cost-based query

compiler found in many modern RDBMSs to achieve
dramatic performance gains [12][13].

Performance improvement

0%

20%

40%

60%

80%

100%

120%

Baseline New design

R
el

at
iv

e
W

or
kl

oa
d

ex
ec

ut
io

n
tim

e

84.54%
time
reduction

6.46x
faster

Performance improvement

0%

20%

40%

60%

80%

100%

120%

Baseline New design

R
el

at
iv

e
W

or
kl

oa
d

ex
ec

ut
io

n
tim

e

84.54%
time
reduction

6.46x
faster

Figure 5 Performance gains following static

optimization of a database design, by Rao et al.

3.5 Autonomic computing as online
optimization

Open loop control and optimization remains a

widely used paradigm, exploiting techniques from AI,
control theory, queuing theory, mathematical
optimization and cybernetics to achieve self tuning. In
particular, numerous scheduling techniques form
operations research and queuing theory are being
actively used in production autonomic systems to
achieve workload balance and prioritization
particularly in the face of service level agreement
(SLA) objectives [15] .

Queuing models have because very popular for
modeling concurrency, response time, latency and
throughput. Queuing models provide M/G/1 models
with general service time distributions, multiple request
(customer) classes, with priorities, service scheduling
other than FIFO, GI/G/1 models and discrete-time
models. Multiple queuing models are frequently
coming into queuing networks used for modeling
workflow [4].

3.6 Autonomic computing as feedback control
loop

Control theory is a natural discipline to exploit in

order to achieve self-managing systems. In fact
numerous products have already used control theory
techniques for this purpose. [8][9][10]. In particular the
use of Proportional Integral (PI) controllers and Multi
input/multi output (MIMO) controllers have been

reported in a number of self managing projects with
good success.

Figure 6 Controller for memory tuning, using

MIMO with feedback

The closed loop control lends itself well to
continuously adapting systems and a large body of
literature and past history exists from mechanical and
electrical engineering from which to draw on.

3.7 Autonomic computing as correlation
modeling

Correlation modeling has already demonstrated its

usefulness in both performance analysis and problem
determination. IBM’s eWLM workload management
technology uses the ARM protocol to instrument and
correlate the time spent by each transaction in each
component of a solution stack.

Figure 7 ARM exploitation within IBM's eWLM

(image courtesy of IBM)

IBM’s Log and Trace Analyzer performs event

correlation between events in log files from multiple
components which may reside on a physically
distributed system. Analysis of the correlated events
can help identify first point of failure.

Figure 8 Event correlation in IBM's Log and Trace

Analyzer

Correlation analysis systems are evolving as more
profound problem determination engines, which is a
critical step in the direction of truly self healing
systems. [14][16][17]

3.8 Autonomic computing as security

Security has become, to a large degree its own

mathematical discipline, though there clearly crossover.
In the domain of autonomic computing systems, self-
protection technology is largely based on security
technology for both static and dynamic security
intrusions and attacks. Formost in the foundational
knowledge of self-protecting systems is a deep
understanding of the broad classifications of intrusions
and attacks. Excellent sources include the U.S. DoD
Trusted Computer System Evaluation Criteria (the
Orange Book) and the more recent Common Criteria.
The SANS Institute (http://www.sans.org/) maintains a
list of “The Twenty Most Critical Internet Security
Vulnerabilities”, through a consensus of a group of

experts in the field. The Center for Internet Security
(http://www.cisecurity.org/) has also developed a tool
for testing computer systems against the SANS Top 20
list, and also a set of documents and tools for
benchmarking the security of different computing
platforms. The ISO (International Organization for
Standardization) 7498-2 is a widely referenced
document associated with the design of IT security
solutions. Its purpose is to extend the applicability of
the seven-layer OSI (Open Systems Interconnection)
system model to include secure communication
between systems.

Self protecting technology is divided into two
domains, namely static defenses and dynamic defenses.
The former exploit encryption, antivirus/antiworm and
firewall technology. This includes the detection of self-
encrypting viruses and worms (polymorphic viruses)
[19]. Dynamic defenses protect against real time
intrusion and attacks (both denial of service (DoS) and
distributed denial of service (DDoS)). Dynamic
defenses against attacks are largely based on router and
traffic analysis. Intrusion detection schemes are more
complex and use a variety of pattern matching and
routing analysis techniques [18].

4. The role of autonomic computing
architecture

Several architectures have been proposed for

autonomic computing in recent years [3]. In reality no
single architecture will satisfy all domains. The
architectural requirements for real-time embedded
systems with extreme scalability and latency objectives
force architectural tradeoffs that would never be
acceptable in enterprise management system where
availability, serviceability and component
heterogeneity. What is known about architecture is
simply this: it’s good to have one for whatever system
you are building, and it’s even better for there to be an
open standard for architectures within a domain.
Architectures allow developments teams two degrees of
freedom. First they allow for improved component
reuse (the Philosopher’s Stone of software
development). Second, architectures allow groups of
developers to collaboratively develop software more
easily. In particular if the architecture is mature
(reused) the development team can proceed rapidly
with confidence that the architecture they are using is
tried and true and unlikely to suddenly collapse from
sudden forgotten failings (such as design
scalability/concurrency). Therefore, the industry would
be wise to move to an open architecture for autonomic
computing for enterprise management systems. That

autonomic computing architecture may be very
different from an architecture we might build for a real-
time transaction processing system, or an embedded
operating system.

5. Conclusion

The development of autonomic systems and middle-

ware pose special challenges (some unique others less
so). We have show the administration of modern IT
systems to have combinatorial complexity far
exceeding the number of atoms in the universe, and
therefore far beyond the ability of human
administrators to fully optimize. A software
engineering paradigm based on 7 specific guidelines
for autonomic computing, such as the focus on building
“sufficiently” self managing systems, and always
providing an off switch. Autonomic systems should be
based on a wide range of techniques, and a strong
mathematical foundation exists for many of these.
These include many well known foundational
techniques form AI, control theory, operations
research, and other domains. In this paper we surveyed
some of the major techniques that have had the most
significant traction in production oriented autonomic
computing systems. By applying the software
engineering principles described here and drawing
from the core foundational mathematics that underlie
the most successful autonomic computing projects
software development teams can improve their chances
for building autonomic technology that is both high
value and accepted and trusted by system and database
administrators.

Acknowledgements

This article is based on part of a keynote talk given
at the 3rd IEEE International Workshop on the
Engineering of Autonomic and Autonomous Systems
(EASe’06), March 29, 2006, Postdam, Germany.
http://www.ulster.ac.uk/ease.
DOI: 10.1109/EASE.2006.18

References

[1] P. Horn, “Autonomic Computing: IBM’s Perspective on
the State of Information Technology”,
http://www.ibm.com/research/autonomic, International
Business Machines, Armonk, NY, 2001
[2] S. Lightstone, A. Storm, C. Garcia-Arellano, M. Carroll,
J. Colaco , Y. Diao, M. Surendra “Self tuning memory
management in a relational database system” Fourth Annual
Workshop on Systems and Storage Technology, December

11, 2005, IBM Research Lab, Haifa University campus,
Mount Carmel, Haifa, Israel.
[3] Steve R. White, James E. Hanson, Ian Whalley, David
M. Chess, Jeffrey O. Kephart: An Architectural Approach to
Autonomic Computing. ICAC 2004: 2-9
[4] Surajit Chaudhuri, Gerhard Weikum: Foundations of
automated database tuning. SIGMOD Conference 2005: 964-
965
[5] S. Lightstone, B. Schiefer, D. Zilio, J. Kleewein
“Autonomic Computing for Relational Databases: the ten
year vision”, IEEE Workshop on Autonomic Computing
Principles and Architectures (AUCOPA' 2003), Banff AB,
Aug. 2003.
[6] Christine Draper, Randy George, Marcello Vitaletti:
Installable Unit Deployment Descriptor for Autonomic
Solution Management. DEXA Workshops 2004: 742-746
[7] P. Coffee, “Autonomic hinges on truest, eWeek.com,
June 7 2004 .
http://www.eweek.com/article2/0,1895,1607786,00.asp
[8] J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury:
Feedback Control of Computing Systems, Wiley 2004
[9] S. Parekh, K. Rose, Y. Diao, V. Chang, J. Hellerstein,
S. Lightstone, M. Huras: Throttling Utilities in the IBM DB2
Universal Database Server, American Control Conference,
2004
[10] Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Rean
Griffith, Gail Kaiser, Dan Phung, "Self-Managing Systems:
A Control Theory Foundation," ecbs, pp. 441-448, 12th
IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS'05), 2005.
doi: 10.1109/ECBS.2005.60
[11] E. Kwan, S. Lightstone, B. Schiefer, A Storm, L Wu.
“Automatic Configuration for IBM DB2 Universal Database:
Compressing years of performance tuning experience into
seconds of execution”, 10th Conference on Database Systems
for Business, Technology, and the Web (BTW

2003),February 26 - 28, 2003, University of Leipzig,
Germany.
[12] J. Rao, S. Lightstone , G. Lohman, D. Zilio , A. Storm,
C. Garcia-Arellano, S. Fadden. “DB2 Design Advisor:
integrated automated physical database design”, VLDB
2004, Toronto, Canada
[13] Nicolas Bruno and Surajit Chaudhuri. Automatic
Physical Database Tuning: A Relaxation-based Approach.
SIGMOD 2005.
[14] Sterritt R, (Dec 2002) "Towards Autonomic Computing:
Effective Event Management", Proceedings of 27th Annual
IEEE/NASA Software Engineering Workshop (SEW),
Maryland, USA, December 3-5 2002, IEEE Computer
Society, Pages 40-47
[15] Melissa J. Buco, Rong N. Chang, Laura Z. Luan,
Christopher Ward, Joel L. Wolf, Philip S. Yu: Utility
computing SLA management based upon business
objectives. IBM Systems Journal 43(1): 159-178 (2004)
[16] Mark Brodie, Sheng Ma, Leonid Rachevsky, Jon
Champlin: Automated Problem Determination using Call-
Stack Matching. J. Network Syst. Manage. 13(2): (2005)
[17] Mark Brodie, Sheng Ma, Guy Lohman, Tanveer Syeda-
Mahmood, Laurent Mignet, Natwar Modani, Mark Wilding,
Jon Champlin, Peter Sohn, “Quickly Finding Known
Software Problems via Automated Symptom Matching”,
ICAC 2004.
[18] James J. Whitmore: A method for designing secure
solutions. IBM Systems Journal 40(3): 747-768 (2001)
[19] “The History of Computer Viruses”, ViruScanSoftware,
http://www.virus-scan-software.com
[20] S. Lightstone, "The need for ease: development
principles for successful autonomic computing projects,"
ease, pp. 5-8, Third IEEE International Workshop on
Engineering of Autonomic & Autonomous Systems
(EASE'06), 2006. doi: 10.1109/EASE.2006.16

	Introduction
	2. A software engineering foundation
	#1 Build what users need, not what’s cool.
	#2 Always give the user “an out”. Features providing system automation must have an off switch.
	#3 Features must be on by default in order for the majority of users to exploit them.
	#4 Never force the user to make a choice that your developers could not.
	#5 Autonomic computing technology must work in real world scenarios.
	#6 Never automatically undo or contradict the explicit choices of the administrator / application(s).
	#7 Minimize policy and keep it human

	3. Foundational Techniques
	3.1 Autonomic computing as dependency management
	3.2 Autonomic computing as an expert system
	3.3 Autonomic computing as tradeoff elimination
	3.4 Autonomic computing as static optimization
	3.5 Autonomic computing as online optimization
	3.6 Autonomic computing as feedback control loop
	3.7 Autonomic computing as correlation modeling
	3.8 Autonomic computing as security

	4. The role of autonomic computing architecture
	5. Conclusion
	Acknowledgements
	References

