
IEEE TFAAS Newsletter – Issue 4 (Apr/May 2006)
(c) 2006 IEEE Computer Society – Task Force on Autonomous and Autonomic Systems
http://tab.computer.org/aas/

Constellation Program Return to the Moon: Software Systems Challenges –
Autonomy and Autonomicity a Solution?

Dr. David J. Atkinson
Program Manager, JPL Exploration Systems Engineering

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena, California USA 911089

David.J.Atkinson@jpl.nasa.gov

Abstract

This letter, based on a keynote talk at EASe-2006

introduced NASA’s Constellation Program, which is
developing new space systems for renewed human
exploration of the moon, and eventually, Mars. A
selection of challenges for software systems were
introduced that arise from the special circumstances of
Constellation Systems. These challenges illustrate a
variety of the types of problems that must be addressed
related to software quality, automation, autonomicity
and autonomy. For example, Constellation program-
level systems engineering and integration activities are
tasked with ensuring interoperability, reuse,
compatibility, and evolutionary upgrade of all systems.
To further compound the challenges, Constellation
missions represent a mixing of the human space-flight
processes with those of NASA’s robotic exploration
missions. These factors and others give rise to many
unique and/or significantly more complex engineering
than has been previously faced in the development of
space systems. In this context, software reliability and
safety become critical qualities for what will arguably
be the most complex software systems artifact ever
created.

1. Introduction

The realities of today’s missions; reducing costs
while staying safe, and the vision for tomorrow’s
missions; extreme, novel, flexible and self-sustaining,
dictate the need for automation, autonomy (self-
direction/self-governance) and autonomicity (self-
management),

The Constellation Program, managed by NASA’s
Exploration Systems and Mission Directorate, is

charged with developing, integrating, and operating the
space systems that will enable further human
exploration of the moon, and eventually, Mars. Among
the most critical of these systems is the Crew
Exploration Vehicle (CEV), slated to replace the aging
Space “Shuttle” fleet as the primary space
transportation system to near-Earth space soon after
2010 and to lunar space around 2018. Other in-space
systems include the Lunar Surface Access Module
(LSAM), launchers, in-space propulsion, lunar surface
habitat, and lunar surface systems including
instrumentation and robots of various types. Supporting
these integrated systems on the ground will be mission
operation systems and ground data systems.
Information technology, computing, software
engineering and automation are technology areas that
have each rapidly advanced since the last time NASA
developed major space systems. There are significant
challenges for software systems introduced by the
unique requirements, scale, and complexity of this
enterprise. Among the most challenging for software
systems are those arising from automated, autonomous
or autonomic systems.

2. Exploration Systems, Automation,
Autonomicity and Autonomy

Although the on-going NASA procurements of
some of the Constellation systems preclude a detailed
discussion of system and mission requirements, it is
possible to examine some of the more well know and
previously disclosed scenarios involving automation,
autonomicity and autonomy. Unlike many previous
NASA systems, there are a great many capabilities and
functions in the Constellation systems that must be
automated (human-independent) or semi-automated

(human involved in the process). Autonomy and
autonomicity capabilities take this one step further,
indicating functions that must be able to be performed
independently of Earth control and communication. In
NASA parlance, the crew may participate in
“autonomous” functions (i.e. definition of autonomous
is without control from the Earth); similarly, some
autonomous functions may be fully automated.
Autonomicity is where the software or hardware is self-
managing – a specialized form of fully automated
autonomy.

A salient example where automated, semi-
automated, autonomous and autonomic functions all
come together is in the area of Integrated Systems
Health Management (ISHM). Unlike robotic
spacecraft, which in the case of serious error “fail
safe”, i.e., recovery may be guided in time by ground
operations, human spaceflight systems must “fail
operational”, to preserve human health and safety as
the number one priority. One of the more studied
aspects of ISHM in the Constellation program (where
significant technical issues remain unresolved) is in the
area of aborts. For instance, earlier in the definition of
the Crew Exploration Vehicle, there was a requirement
that the vehicle be able to “abort to Earth” at any time,
even if the crew is incapacitated. It is likely there will
be some constraint put on this requirement due to the
enormous technical challenge of some of the potential
failure scenarios.

Another example where challenges arise for
automated or autonomous software systems are “locus
of control” situations. There may be planned or
unplanned operational situations that require primary
control to shift from ground to flight, crew to vehicle,
or the opposite, in various combinations of automated
and autonomous modes. Examples include launch,
space systems rendezvous and docking, EDL (entry-
descent-landing), emergency situations, and
telecommunication interruption due to occultations.
Studies are underway now regarding situations that
require “transfer of authority” and how these may be
decomposed into functional requirements on flight
systems, crew, ground systems and operations.

3. Software Reliability

Software reliability is a major issue for the
Constellation Program. It is certain that many millions
of lines of code must be developed. The Program’s
goal is to avoid introduction of defects as well as detect
and remove (or mitigate) defects at each stage in the
software lifecycle. Software systems reliability can be

affected throughout Constellation’s mission lifecycle
by programmatic, management, and technical factors.
Any of these factors can increase the likelihood of
defects or cause defects to be introduced.

3.1. Programmatic Factors

Programmatic factors include the mission
architecture and operations concepts. For example,
fundamental changes in requirements, lofty
expectations, changes in organizations and
stakeholders, and the familiar constraints on cost and
schedule that inevitably take hold.

In Constellation, the mission architecture is very
complex with many operations scenarios. Concepts for
mission operations require that multiple alternative,
contingency mission plans be available at any time to
ensure safety and success of the overall mission
objectives. These introduce significant complexity to
the functional requirements on systems that include
software. A significant programmatic challenge for
software systems arises from multiple government and
industry stakeholders, each with their own views,
standards, and processes. This adds another level of
complexity, principally to the development process.

Systems engineering and integration “expectations”
for software systems also introduce reliability
challenges. Reuse is potentially one of the most
significant. A system engineering goal is to enable
Constellation software artifacts to be reusable across
systems, and across missions, over a significant lifetime
(a decade or more). Added to the reuse mix is the
opportunity (or threat, some would say) of reusing
legacy systems. Reuse will be discussed in more detail
below.

Interoperability, a factor relating to the “locus of
control” scenarios described above, also introduces
special challenges. Constellation systems will be
implemented by multiple organizations (NASA, the
Prime contractors, subcontractors). They must be
readily operated by common operations techniques and
technology, including a shifting locus of control. The
level of interoperability sought for Constellation
significantly exceeds any current civil space system.

Compatibility is another system engineering
objective. The goal is to enable key components to be
interchangeable among project systems (e.g., CEV,
LSAM). A component of any significant complexity
will have some of its functionality delivered by
software.

3.2. Management Factors

There are multiple Management factors that strongly
affect software reliability. These include planning,
knowledge, commitment, communications, flexibility,
and personnel transitions.

A major management factor we are focusing on
right now is ensuring that strong planning is performed
early enough in the Constellation Program. Numerous
governing rules in NASA as well as industry best
practices support this objective. An example product
of early planning is the “Software Management Plan”,
a document with a rather obvious title that nevertheless
can enable or disable many software engineering
practices within projects and thus have a profound
effect on overall software quality.

A second major factor is how Constellation program
managers perceive the risks associated with software
systems. As in many organizations that came of age
before the maturation of serious computing power and
software, senior management has its own expertise base
centered in hardware engineering, operations, and other
disciplines. Software remains something mysterious
for many managers. Through some tough lessons-
learned by NASA and other organizations, many
managers recognize software’s importance for
delivering an increasing amount of functionality in
space systems and the associated cost of poor software
quality. Managing risk through rigorous analysis,
planning, testing and other methods will be a key
approach.

3.3. Technical Factors

Technical factors that affect software reliability are
most familiar to those of us working on such systems.
These include software engineering process,
development environments, tools, legacy systems, and
the overall product lifecycle.

4. Software Product Lines

As mentioned earlier, “reuse” is one of the key
objectives of the Constellation program. The concept
of reuse includes both hardware and software systems,
either new, legacy, commercial, or some combination
thereof. Many case studies have shown that the
systematic development and reuse of core assets
substantially reduces implementation time and
increases product quality. Core assets include
requirements, architecture, documentation, code, test
plans, experience, management processes and other

products of the software engineering lifecycle. The
best practices for large-scale reuse have been captured
and defined into a practice called software product
lines.

The case studies show that it is critical that the
foundations for software product lines are laid early in
the project lifecycle, and that the practice receives
support from senior project management. This
dovetails into our observations regarding management
factors that influence reliability.

One of the major foundations that must be laid early
is the system architecture. It must be developed with
support for reuse as a key objective. Without this
focus, evolution of the software system will occur in an
ad-hoc manner as upgrades are apportioned among the
multiple contractors and other development
organizations.

Our systems engineering team is currently focusing
on identifying and mitigating the risks and obstacles to
effective reuse within the Constellation Program.
Concurrently, the development of a comprehensive
software architecture and framework is underway.

5. Conclusion

This brief letter has described a number of very
difficult challenges for software systems in the NASA
Constellation Program. The challenges arise from all
quarters – programmatic, management, technical, as
well as the mission itself. With a higher degree of
automation, autonomicity and autonomy than any other
civil space systems (excluding small robotic systems),
the challenges for reliably delivering safe and useful
capabilities in Constellation are profound. We
approach these challenges systematically, and while
they are daunting, the opportunities arising from space
exploration are exciting and give us a deep motivation
to succeed.

6. Acknowledgement

This article is the IEEE Computer Society – Task
Force on Autonomous and Autonomic Systems
Apr/May 2006 – Letter released through the TFAAS
Newsletter – Issue 4 @ http://tab.computer.org/aas/

The article is based on part of a keynote talk given
at the 3rd IEEE International Workshop on the
Engineering of Autonomic and Autonomous Systems
(EASe’06), April 27, 2006, Columbia, USA.
http://www.ulster.ac.uk/ease.
DOI: 10.1109/EASE.2006.4

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States
Government or the Jet Propulsion Laboratory,
California Institute of Technology.

	1. Introduction
	2. Exploration Systems, Automation, Autonomicity and Autonomy
	3. Software Reliability
	3.1. Programmatic Factors
	3.2. Management Factors
	3.3. Technical Factors

	4. Software Product Lines
	5. Conclusion
	6. Acknowledgement

