
Achieving an acceptable design model for autonomic systems

Simon Dobson
Systems Research Group

School of Computer Science and Informatics
UCD Dublin IE

simon.dobson@ucd.ie

Abstract

Autonomic systems present unique design challenges, in
that their individual adaptive components may interact in
complex ways which defeat traditional approaches to de-
sign, analysis and implementation. We argue for a more
holistic approach to design, and identify some key proper-
ties that are necessary for next-generation design methods.

1 Introduction

Autonomic systems present unique opportunities and
unique challenges. Their flexibility and adaptability must
be balanced against the need for predictability and the abil-
ity to satisfy (and be seen to satisfy) the requirements of
customers.

The engineering of adaptive systems is a formidable
challenge – especially as many software engineers would
argue that we have so far failed to conquer the problem
of engineering systems to exhibit a single well-defined be-
haviour! Whilst great progress has been made in individual
areas such as adaptive network protocols, we still have very
little idea how such complex and adaptive components can
best be used within larger systems.

The purpose of this paper is to explore what it is that
makes autonomic systems design different from other, more
traditional domains. In doing so we will derive some prop-
erties that a design model for autonomic systems should
have. This is not to suggest that a single, unified model with
universal applicability exists: rather the opposite. However,
there are core issues which any model must address, and by
identifying these issues we hope to achieve some clarity as
to the requirements under which we must work.

Our central thesis is that, for modern systems design, ev-
erything interesting is composition: the interconnectedness
of modern enterprise and communications systems means
that we cannot consider individual applications or services

in isolation, and this especially includes their adaptive be-
haviours. This implies that we must focus on the ways in
which systems compose together and interact, and ensure
that we achieve predictable and robust composition even in
the face of dynamic populations of adaptive services.

Section 2 explores some of the challenges in autonomic
systems design, and especially the sources of costs of own-
ership for complex systems. As a result, section 3 ar-
gues that we should treat interactions between components,
rather than components themselves, as the object of study
for design, and identifies some core areas on which to fo-
cus design effort. Section 4 concludes with some possible
directions for the future.

2 Composition as the core challenge

Autonomic computing and communications arose in re-
sponse to two related driving forces [6]. The complexity of
systems is increasing, driven by increased use of automa-
tion, increased use of pervasive and sensor systems, and
increased interconnectivity between systems previously re-
garded as independent. This in turn increased the total cost
of construction and (more importantly) ownership for large
systems. The cost of particular concern was the failure cost,
since increased interconnection means that failures tend to
propagate beyond their initial causes.

The use of the term “autonomic” comes by analogy with
biological systems, in which the autonomic nervous system
is responsible for regulating sub-conscious activities such
as organ function in such a way as to allow conscious activ-
ity to proceed unimpeded. If we decide to run (a conscious
decision), our breathing and heart rates will increase (un-
consciously) to accommodate us; if we enter a hot room,
unconscious mechanisms will begin to cool us.

The key concept in autonomic systems is the “autonomic
control loop” (figure 1) which captures the feedback nature
of adaptivity. The system collects data about its environ-
ment and functioning, which is the analysed and used to in-
form an adaptation decision. Once executed, the impact of

IEEE TFAAS Newsletter – Issue 7 (Oct/Nov 2006) – Letters
c© 2006 IEEE Computer Society – Task Force on Autonomous and Autonomic Systems

http://tab.computer.org/aas



the adaptation may be observed and used to inform further
decisions. This closing of the decision loop characterises
autonomic systems: decisions reflect the impact of previous
decisions.

What does this analogy mean for computers? Much of
the work in autonomic systems involves improving the au-
tomated management of technology. Examples include:

• improving the self-description of components to allow
automated installation;

• improving network protocols to adapt to changes in
other layers of the network stack [7]; and

• changing protocols at a fundamental level to provide
more adaptive responses to changing network condi-
tions [5].

Such approaches tackle local complexity: a specific chal-
lenge is identified, has its complexity reduced by a partic-
ular adaptive technique. There are significant bodies of re-
search in applying autonomics-inspired techniques to com-
puting and communications [3].

2.1 The costs of change

What guarantees do we have, however, that a collection
of such approaches collectively reduces complexity? Using
two of the examples above, does adding cross-layer infor-
mation flow improve or damage protocols that are adaptive
at the network layer? The actual answer – which may be
yes or no, of course depending on the details of the individ-
ual approaches – is not important for our present purposes:
the point is rather that we have no reliable way of deciding a
priori one way or the other. This means that, to continue the
example, we need to design our network system en bloc and
determine (through analysis or testing) that it provides the
properties we want. If we change one of the components,
we must re-analyse and re-test.

The software engineer Bertrand Meyer once charac-
terised changes in software as falling into one of two
classes. Linear changes are those whose cost to perform
is proportional to the size of the change being made: a
large significant change is costly, while a small change is
(relatively) cheap. Non-linear changes, by contrast, have a
cost proportional to the size of the system being changed,
so large systems may be prohibitively expensive to change
in any way whatsoever.

The significance of this classification to autonomics is
clear. Systems arise from, and are characterised by, the
interactions between components rather than from the be-
haviours of those components individually. The adaptive
behaviour of a single component may interfere with that of
another, so that the composition of two individually-correct

behaviours is no longer correct. This renders all composi-
tions, and all changes, non-linear and hence fundamentally
infeasible as systems grow.

At present, while we can adequately design adaptive
individual adaptive components to address well-bounded
problems, we have considerably less understanding of the
ways in which these components compose. The interac-
tions of composed components frequently come as a sur-
prise: their interactions are likely to be sub-optimal at best.
This does not provide at attractive basis for the design and
evolution of autonomic systems.

2.2 A shift of focus

Software engineering is based on the principle of decom-
position: given a complex problem, we decompose it into
smaller problems, continuing recursively until we have sub-
problems that are simple enough to be solved in isolation.
However, the tacit assumption here is that the sub-problems
will compose to solve the original problem we had.

We focus on generating simple, solvable problems from
complex ones. Is it possible that, for modern (and espe-
cially autonomic) systems, this focus is wrong?

If we accept that component interactions are complex
and unpredictable, this means that they should be given pri-
ority in the design process. This is especially true if we con-
sider that the component populations of systems will change
over their lifetimes, without (it is hoped) adversely affecting
the system itself.

Software engineering teaches us to seek a correct decom-
position of a problem into an orthogonal, weakly-coupled
collection of cohesive components which are then imple-
mented. The objects of study are the individual compo-
nents, the things that solve the “real” sub-problems.

However, an autonomic system cannot realistically be
treated as a simple collection of sub-problems. Any ac-
tion we take in one area may impact on another, positively
or negatively. If the components are adaptive themselves,
then their adaptations may interact in different ways over
time. It doesn’t matter how effective a component is at ad-
dressing its own problem: if it damages the behaviour of
another component, the system as a whole will behave sub-
optimally.

The implication is clear: the correct object of study for
complex adaptive systems is not the components, but their
interactions. At the risk of taking an overly extreme posi-
tion, it almost doesn’t matter what an individual component
does, and how effective it is at solving its local problem: the
component will often be replaced, or will interact poorly
with some other component either now or later when that
component is itself replaced. The properties of the individ-
ual components – their efficiency, performance, elegance,
robustness and so on – are not the issue: rather, we need



Collect 

Decide 

Act Analyse 

Environmental sensors
Network instrumentation

Application requirements
User context

Uncertain reasoning

Inference

Bounds and
envelopes

Decision theory

Game theory

Economic models

Rules and policies

Hypothesis generation

Inform users
or administrators

Record
strategies

Managed elements

Risk analysis

Figure 1. The autonomic control loop (from [3])

to understand the system as a whole, and how changes in
components affect its overall behaviour.

3 Interactions as an object of study

How might we come to such an understanding? It is
clearly a very complex challenge, but one way to approach
it is to explore what properties we would like to see in such a
model: what features would make it easy to study the inter-
actions between components, and to prove properties about
them? What follows is a first attempt to sketch out such a
feature list.

3.1 Providing envelopes of behaviour

A user’s perception of a system is based on the system
itself, not on its components. The internal structure is typ-
ically of interest to designers and maintainers, but not to
users. Therefore our first desirable property is that we are
able to describe the behaviour of the system as a whole.

This is more of a challenge than it might first appear.
The behaviour of individual components may affect those
of others, and their individual adaptations may change these
effects over time. We may not be able to say exactly what a
system will do at any point. As a concrete example, con-
sider a video-on-demand streamer whose network driver
adapts to changing traffic conditions. The system may only
be able to deliver restricted frame rates at times of high load,
or may drop frames or reduce resolution. Predicting ex-
actly what a user will experience at any time involves know-
ing the network environment. However, we can still make
meaningful statements about system behaviour. We might,
for example, say that it is better to stop a stream entirely
rather than allow it to be seen degraded beyond a certain
critical threshold. Another strategy might be to time-shift
the stream, downloading it over time and then playing it lo-
cally rather than streaming it over the congested network.

Such statements establish an envelope of behaviour for
the video streamer. We cannot say what it will do in detail at
any time, but we can say that it will remain within a partic-
ular envelope of user quality. Note that this says little about
the individual components of the streamer: rather, it allows
free rein for the designer to develop optimised protocols and
so forth, as long as these techniques can be co-ordinated to
keep the system within envelope.

While we tend to focus on changes in behaviour, it is
perhaps equally important that we understand those areas
in which behaviour stays the same: where different organ-
isations and approaches can yield the same behaviour (for
example see [1]), or where we want behaviour to remain
constant even to the detriment of other factors.

3.2 The meaning of systems

When we suggested above that one way to deal with net-
work congestion was to time-shift the video and deliver it
from local storage, we were stepping well beyond the tra-
ditional framework of protocol design. In essence we were
making use of knowledge that we have about the ways in
which people consume video: that they might prefer a good
experience a little later than a degraded experience when
they ask for it. The strategy we chose is only valid under
some specific conditions of user activity. This means that
the relationship of the streamer to the network is being con-
ditioned by the use that will be made of the stream at the
end-point.

Traditional communications design does not work like
this: it moves uninterpreted bit streams across the network,
under constraints of bandwidth, jitter and so forth. How-
ever, knowing the meaning of the bit stream might change
the constraints: a video intended for immediate viewing
(streaming) has different constraints to the same video be-
ing intended for later viewing (downloading) [2]. The type
of the data is not the critical factor: rather, the semantics of



the connection is derived from how the information will be
used.

Of course this distinction is already made to some de-
gree: we might use RSVP or RTSP to stream a video, whilst
using HTTP or FTP to download it. The point is that this
is not a network decision, or one that can be made within a
single component, but one that relies on higher-level knowl-
edge. If we capture this knowledge into the system we can
make such decisions internally.

3.3 Supporting inputs and context

Pervasive computing relies a lot on context – often de-
fined as the environment in which activity occurs, under-
stood symbolically. A pervasive system provides service to
users, but those services and their delivery may adapt to the
users’ location, devices, tasks, constraints and other factors.

Such a system will have two distinct forms of input:
the “classical” inputs such as keystrokes and gestures, to-
gether with “contextual” inputs derived from the environ-
ment. Since changes in either can affect the users’ expe-
rience, it makes little sense to handle them differently at a
model level.

For an autonomic system, we need to interpret context
more widely than is usual for a pervasive system. As well
as the user-centric context of location, device, task and so
on, we might treat network latency, bandwidth, contention,
the presence of firewalls and other internal factors as context
which affects the system’s behaviour.

Introducing complex context can be daunting, since it
increases the number of degrees of freedom that a designer
must understand. There will however often be additional
(and sometimes quite rich) structure within both context and
the behaviours and adaptations that it induces [4], and these
may be leveraged. Such structure can be quite effective in
helping to define the envelope of behaviour of a system.

3.4 Principled trade-offs

When we speak of optimising behaviour, it is important
to remember that we optimise against specific criteria. This
implies that we cannot optimise against everything, which
in turn implies that optimising a system along one dimen-
sion may – and typically will – result in sub-optimal be-
haviour on another dimension.

How can a designer decide which dimensions are worth
optimising? This decision is typically easier with respect to
components than with respect to systems: a network com-
ponent might optimise throughput, but if this compromises
(for example) the system’s ability to satisfy multiple users
simultaneously then it was a poor choice. Moreover the
“correct” choice may change over time and with context.

A design model may not be able to help a designer make
this choice, but it may enable her to understand the implica-
tions of different choices and how they impact on the sys-
tem’s overall behaviour by illuminating how the choices in-
teract with the envelope of behaviour or the semantics of
actions.

3.5 Evolution

An autonomic system designer’s work is never done: any
interesting, long-lived system will exhibit a constant pro-
cess of change in terms of its components but also in its
tasks and constraints. A system design must be “living”, in
the sense that it can continue to track and reflect the changes
that must be made as the system evolves.

Perhaps a good analogy is with “sound trip engineering”
tools for software engineering, in which changes in a design
document (typically one or more UML diagrams) are auto-
matically reflected by changes in the associated code, and
vice versa. This is not to say that round-trip engineering is
a reasonable target, and one may criticise such tools as de-
stroying much of the richness of a design by forcing concep-
tually different structures into the same code patterns. The
point is that design, its artifacts and the associated analyses
and decisions are part of an on-going process – and it is the
process that is important, not the artifacts.

4 Conclusion

In this short paper we have argued for a more holistic,
more principled and more structured approach to the design
and engineering of autonomic systems.

There are a number of strands of research that are de-
veloping analysis and programming techniques to deal with
the issues raised here, and we are grateful to the authors of
this research for their inspiration. We do not seek here to
argue for one approach over another: the important point is
to encourage a change in the ways in which we conduct the
design processes for complex adaptive systems. We firmly
believe that a focus on individual problems in isolation is
rapidly becoming a hindrance to the effective construction
of systems.

This viewpoint has wider ramifications. Like any disci-
pline, software engineering has seen a massive increase in
specialisation, and specialisation is harmful to developing
a balanced, holistic view of a large system. By providing
common, broad-spectrum models within which to develop,
compare and analyse different parts of a system, we allow
specialists to see how their activities impact in the wider
systems context, without unnecessarily prioritising any par-
ticular aspect of a design ahead of time and without fossil-
ising design decisions too early in the process.



Acknowledgements

This article is the IEEE Computer Society – Task Force
on Autonomous and Autonomic Systems Oct/Nov 2006 –
Letter released through the TFAAS Newsletter – Issue 7 @
http://tab.computer.org/aas

The article is based on a keynote talk given by the author
at IFIP Autonomic Networking, Paris FR, September 2006.

References

[1] V. de Silva and R. Ghrist. Homological sensor networks.
Notices of the American Mathematical Society, 54(1):10–17,
2007.

[2] S. Dobson. Putting meaning into the network: some semantic
issues for the design of autonomic communications systems.
In M. Smirnov, editor, Proceedings of the 1st IFIP Workshop
on Autonomic Communications, volume 3457 of LNCS, pages
207–216. Springer Verlag, 2005.

[3] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zam-
bonelli. A survey of autonomic communications. ACM Trans-
actions on Autonomous and Adaptive Systems, 1(2):223–259,
December 2006.

[4] S. Dobson and P. Nixon. More principled design of pervasive
computing systems. In R. Bastide and J. Roth, editors, Human
computer interaction and interactive systems, volume 3425 of
LNCS. Springer Verlag, 2004.

[5] E. Gelenbe and R. Lent. Power-aware ad hoc cognitive packet
networks. Ad Hoc Networks Journal, 2(3):205–216, 2004.

[6] J. Kephart and D. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–52, January 2003.

[7] M. Razzaque, P. Nixon, and S. Dobson. Demonstrating the
feasibility of an autonomic communications-targeted cross-
layer architecture. In Proceedings of the 14th International
Conference on Advanced Computing and Communications,
2006.


