Kernel Methods in Computer Vision

Christoph Lampert Matthew Blaschko
Max Planck Institute for MPI Tiibingen and
Biological Cybernetics, Tiibingen University of Oxford

June 20, 2009

%

MAN-PLANCK-CESELLECHAFT

14:00 — 15:00 Introduction to Kernel Classifiers

15:20 — 15:50 Selecting and Combining Kernels

15:50 — 16:20 Other Kernel Methods

e S S e

16:40 — 17:40 Learning with Structured Outputs

Slides and Additional Material (soon)

http://www.christoph-lampert.de

Foundatiors cnd Treads™ in

Computer Graphics
and Vision

also watch ouUt fOr p——

Introduction to Kernel Classifiers

Linear Classification

Separates these two sample sets.

A O
OO, O
o ©

height
O
O

Linear Classification

Separates these two sample sets.

X ® ,

OO0 O .-
O O /'

height
O
O

width

Linear Classification

Linear Regression

Find a function that interpolates data points.

1.2

1.0

0.8

0.6

0.4

0.2

o8.

0.2

0.4 0.6

0.8

1.0

Linear Regression

Find a function that interpolates data points.

1.2 +

1.0 +

0.8 +

0.6 +

0.4

0.2

0'8.0 012 0‘.4 0‘.6 O‘.S 1.0

Least Squares Regression

Linear Dimensionality Reduction

Reduce the dimensionality of a dataset while preserving its structure.

4
4
3 +
n +
4
2 s+, A +
" +
+ +
+ +
o, + o+ +
P
1 + + PR
+ +
P
++
0 A
-, o+
o o+
T +
1 try -
+
Tt e
o+
+ +
2 % +
N +
4
++
3
+ + o+
-4

Linear Dimensionality Reduction

Reduce the dimensionality of a dataset while preserving its structure.

Principal Component Analysis

Linear Techniques

Three different elementary tasks:
o classification,
o regression,

o dimensionality reduction.

In each case, linear techniques are very successful.

Linear Techniques

Linear techniques...

e often work well,

» most natural functions are smooth,
» smooth function can be approximated, at least locally, by
linear functions.

e are fast and easy to solve

» elementary maths, even closed form solutions
» typically involve only matrix operation

e are intuitive

» solution can be visualized geometrically,
> solution corresponds to common sense.

Example: Maximum Margin Classification

Notation:
e data points X = {zy,...,1,}, 7; € RY,
o class labels Y ={w1,..., 4.}, v: € {+1,—1}.

@ linear (decision) function f : R — R,

@ decide classes based on sign f : RY — {—1,1}.
@ parameterize

f(z) = a's' + a*2® + ... a"z" + d°

= (w,z)+ b with w=(a',...,a"), b=a"

(.,.) is the scalar product is R

@ f is uniquely determined by w € R? and b € R,
but we usually ignore b and only study w

» b can be absorbed into w. Set v’ = (w, b), 2’ = (z,1).

Example: Maximum Margin Classification

Given X ={z,...,z.}, Y ={w1,..., un}-

A
2.0 -
0 o o
a a
1.0} = .’
R
IR of
IS
0.0 >

—1.0 0.0 1.0 2.0 3.0

Example: Maximum Margin Classification

Given X ={mz,..., 2.}, Y ={w1,...,yn}. Any w partitions the
data space into two half-spaces, i.e. defines a classifier.

2.0 A flz) >0 g
0 o o

] = m] flz) <0

1.0f w o * ¢
& o
IR of
*

0.0} -
—1.0 0.0 1.0 2.0 3.0

“What's the best w?"

Example: Maximum Margin Classification

Given X = {z,..., 2.}, Y ={w1,...,yn}. What's the best w?
2.0 o 2.0 o
m] 4 . m] *
1.0 . 1.0 .
S .
*3 3
. .
0.0 > = >
~I0 00 0 20 30 —L0 00 0 20

Not these, since they misclassify many examples.

Criterion 1: Enforce sign{w, z;) = y; fori =1,...,n.

3.0

Example: Maximum Margin Classification

Given X = {z,...,z,}, Y ={w1,...,yn}. What's the best w?

2.0 2.0
1.0 1.0
0.0 0.0
—-1.0 0.0 1.0 2.0 3.0 =10 0.0 1.0 2.0 3.0

Better not these, since they would be “risky” for future samples.

Criterion 2: Try to ensure sign(w, z) = y for future (z,y) as well.

Example: Maximum Margin Classification

Given X ={z,..., 2.}, Y ={w1,..., yn}. Assume that future
samples are similar to current ones. What's the best w?

2.0
P
m}
[m] [m]
1.0 o
o
3
*
0.0 /I >
) 0.0 1.0 2.0 3.0

Maximize “stability”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

Example: Maximum Margin Classification

Given X ={z,..., 2.}, Y ={w1,..., yn}. Assume that future
samples are similar to current ones. What's the best w?

2.0 2.0

g
m}

m] m]

1.0 o 1.0

o
R of A
*
—1.0 0.0 1.0 2.0 3.0 —1.0 0.0 1.0 2.0 3.0

Maximize “stability”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

Central quantity:

margin(x) = distance of x to decision hyperplane = (ﬁ,)

Example: Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max

weRE yeR+
subject to
sign(w, ;) = y; fori=1,...n.
w
(—)| >y fori=1,...n.
fwl] "™ ’

Classify new samples using f(z) = (w, z).

Example: Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max vy
weR?, ||w||=1
vER

subject to

yi{w, z;) > fori=1,...n.

Classify new samples using f(z) = (w, z).

Example: Maximum Margin Classification

We can rewrite this as a minimization problem:

min ||w||2
weR?

subject to

yi{w,z;) >1 fori=1,...n.

Classify new samples using f(z) = (w, z).

Example: Maximum Margin Classification

From the view of optimization theory

min ||w||2
weR4

subject to
yi{w,z;) >1 fori=1,...n

is rather easy:
@ The objective function is differentiable and convex.
@ The constraints are all linear.

We can find the globally optimal w in O(n?) (or faster).

Linear Separability

What is the best w for this dataset?

A
o O

height

O O

width

Linear Separability

What is the best w for this dataset?

A y 4
/7
O O
y /
S /7
gl 2 O O

/
/

width

Not this.

Linear Separability

What is the best w for this dataset?

A\\
\O O
\

height

\
O \NO
\
\

width) Wika

Not this.

Linear Separability

What is the best w for this dataset?
A /
o o
/

/
Oy O

/

Iwidth

height

Not this.

Linear Separability

What is the best w for this dataset?

A
O O
5 -
2 O_-5
/”
P
width >

Not this.

Linear Separability

The problem

A

. 2
2 I O _ 0
subject to €
2
(O]
yi(w, ;) > 1 < O B O
has no solution.
The constraints con-
tradict each other! width >

We cannot find a maximum-margin hyperplane here, because there
is none. To fix this, we must allow hyperplanes that make mistakes.

Linear Separability

What is the best w for this dataset?

height
O

Linear Separability

What is the best w for this dataset?

Possibly this one, even though one sample is misclassified.

Linear Separability

What is the best w for this dataset?

height
O

Linear Separability

What is the best w for this dataset?

height
O

Maybe not this one, even though all points are classified correctly.

Linear Separability

What is the best w for this dataset?

B
B
A el
.

height

Trade-off: large margin vs. few mistakes on training set

Solving for Soft-Margin Solution

Mathematically, we formulate the trade-off by slack-variables &;:

min | lw|* + C> &
i=1

weR4 ¢, cR+

subject to
yi{w, z;) > 1 =& fori=1,...n.

@ We can fulfill every constraint by choosing &; large enough.
@ The larger &;, the larger the objective (that we try to minimize).
e (' is a regularization/trade-off parameter:

» small C' — constraints are easily ignored
» large C' — constraints are hard to ignore
» (' = 0o — hard margin case — no training error

@ Note: The problem is still convex and efficiently solvable.

Linear Separability

So, what is the best soft-margin w for this dataset?

O

OAY

O

OO

>

O
O

O
@

X

QO O
OO
O

None. We need something non-linear!

Non-Linear Classification: Stacking

Idea 1) Use classifier output as input to other (linear) classifiers:

fi=<wi, x>

Multilayer Perceptron (Artificial Neural Network) or Boosting
= decisions depend non-linearly on z and wj.

Non-linearity: Data Preprocessing

Idea 2) Preprocess the data:

This dataset is not @) O
(well) linearly separable: O O O X

This one is:

In fact, both are the same dataset!
Top: Cartesian coordinates. Bottom: polar coordinates

Non-linearity: Data Preprocessing

Non-linear separation

Linear
separation

Linear classifier in polar space; acts non-linearly in Cartesian space.

Generalized Linear Classifier

o Given X ={m,...,z.}, Y ={w1,...,un}.
@ Given any (non-linear) feature map ¢ : R¥ — R™.

@ Solve the minimization for p(z), ..., ¢(z,) instead of
T1yee.y Ip.

n
min ||w||2 + C’Zéi
i=1

weR™ £;eRt

subject to

yi(w, p(z)) > 1 =& fori=1,...n.

@ The weight vector w now comes from the target space R™.
@ Distances/angles are measure by the scalar product (., .) in R™.

o Classifier f(z) = (w, ¢(x)) is linear in w, but non-linear in x.

Example Feature Mappings

@ Polar coordinates:
Vv)
Y o R Ty
y L(z,y)
@ d-th degree polynomials:

: 2 2 d d
QY (xl,...,xn>»—>(1,x1,...,xn,xl,...,xn,...,xl,...,xn)

@ Distance map:
o1& (1F=Bill,.... 17— Bwl))

for a set of N prototype vectors j;, i = 1,..., N.

Is this enough?

In this example, changing the coordinates did help.
Does this trick always work?

(@)
@)
O

Is this enough?

In this example, changing the coordinates did help.
Does this trick always work?

Answer: In a way, yes!

Lemma

Let (2;)i1,. ., with z; # x; for i # j. Let p : R¥ — R™ be a feature
map. If the set ©(x;)i=1,..n is linearly independent, then the points
©(x;)i=1,.n are linearly separable.

Lemma
If we choose m > n large enough, we can always find a map ¢.

Is this enough?

Caveat: We can separate any set, not just one with “reasonable” v;:

1.0

0.8]

0.6]

0.4

0.2

0.0]

0.0 0.2 0.4 0.6 0.8 1.0

There is a fixed feature map ¢ : R? — R?%%! gych that — no matter
how we label them — there is always a hyperplane classifier that has
zero training error.

Is this enough?

Caveat: We can separate any set, not just one with “reasonable” v;:

1.0

0.8

0.6

0.4

0.2

0.0|

0.0 0.2 0.4 0.6 0.8 1.0

There is a fixed feature map ¢ : R? — R?%%! gych that — no matter
how we label them — there is always a hyperplane classifier that has
0 training error.

Representer Theorem

Solve the soft-margin minimization for ¢(x1),...,¢(x,) € R™
. 2 ~
C> & 1
pertin el + ;5 (1)
subject to

yilw, p(x;)) >1—-& fori=1,...n.

For large m, won't solving for w € R™ become impossible?

Representer Theorem

Solve the soft-margin minimization for ¢(x1),...,¢(x,) € R™
. 2 ~
C> & 1
pertin el + ;5 (1)
subject to

yilw, p(z;)) 21 =& fori=1,...n.

For large m, won't solving for w € R™ become impossible? No!

Theorem (Representer Theorem)

The minimizing solution w to problem (1) can always be written as

n
w=>Y ajp(z;) for coefficients a1, ..., o, € R.
J=1

Kernel Trick

The representer theorem allows us to rewrite the optimization:

min _ ||w|]* + ngi
i=1

weR™ &R+
subject to
yilw, p(z;)) =1 —& fori=1,...n.

Insert w =327, ajep(z;):

Kernel Trick

We can minimize over «; instead of w:

min ||ZQJ‘P ;) ”2 + ngz

Qg eR 51 6R+

subject to

Za]goxj) >1-=¢; fori=1,...n

Kernel Trick

Use [Jw]]* = (w, w):

min > aar(p(z), o(a) + CY &
k=1 =1

a;€RE;ERT =

subject to
uS oilela), o(z)) > 1—& fori=1,...n.
=1

Note: ¢ only occurs in (p(.), ¢(.)) pairs.

Kernel Trick

Set (p(z),p(2")) =: k(z, 2’), called kernel function.

min_ Y aopk(zy,z) + CY &
k=1 i=1

o €REERT k=

subject to
Yy ok, z) >1-¢ fori=1,...n.
J=1

The maximum-margin classifier in this form with a kernel function is
often called Support-Vector Machine (SVM).

Why use k(z, 2') instead of (p(x), p(z'))?

1) Speed:
@ We might find an expression for k(z;, z;) that is faster to
calculate than forming ¢(z;) and then (p(z;), o(x;)).

Example: 2nd-order polynomial kernel (here for z € R'):
¢:z— (1,v2z,2%) ¢ R®
(p(a), o(z)) = ((1, V2, 47), (1,V2a5,27))
=1+ 2x7; + a7 xj
But equivalently (and faster) we can calculate without ¢:

k(z;, ;) - = (14 ij)2
{ =1+ 2z2; + :cfxf]

Why use k(z, ') instead of (p(x), p(z'))?

2) Flexibility:
@ There are kernel functions k(z;, z;), for which we know that a
feature transformation ¢ exists, but we don't know what ¢ is.

Why use k(z, ') instead of (p(x), p(z'))?

2) Flexibility:

@ There are kernel functions k(z;, z;), for which we know that a
feature transformation ¢ exists, but we don't know what ¢ is.
@ How that?7?

Theorem

Let k: X x X — R be a positive definite kernel function. Then

there exists a Hilbert Space H and a mapping ¢ : X — 'H such
that

k’(l‘, xl) = <(p(l‘), 90(:5,»7'[

where (., .)3, is the inner product in H.

Positive Definite Kernel Function

Definition (Positive Definite Kernel Function)

Let X be a non-empty set. A function k: X x X — R is called
positive definite kernel function, iff

@ k is symmetric, i.e. k(z,2') = k(2/,z) for all z,2' € X

@ For any set of points z,...,z, € X, the matrix

Ky = (k(zi, 77))

i’j

is positive (semi-)definite, i.e. for all vectors ¢t € R™:

> Kyt > 0.

ig=1

Note: Instead of “positive definite kernel function”, we will often
just say “kernel”.

Hilbert Spaces

Definition (Hilbert Space)
A Hilbert Space H is a vector space H with an inner product
(.,.)n, e.g. a mapping
(,)n : HxH—R
which is
@ symmetric: (v, ')y = (v, v)y for all v,v' € H,
@ positive definite: (v, v)» > 0 for all v € H,
where (v, v)3, =0 only for v =0 € H.
o bilinear: (av,v')y = a{v, V') forve Hya € R
<U + v, UH)H _ <U, U”>H + <U/, UU)H

We can treat a Hilbert space like some R", if we only use concepts
like vectors, angles, distances. Note: dim’H = oo is possible!

Kernels for Arbitrary Sets

Theorem

Let k: X x X — R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ¢ : X — 'H such
that

k(z, 2') = (p(z), o(z))n

where (., .)3 is the inner product in H.

Translation

Take any set X and any function k£ : X x X — R.
If & is a positive definite kernel, then we can use £ to learn a (soft)
maximum-margin classifier for the elements in X!

Note: X can be any set, e.g. X' = { all images }.

How to Check if a Function is a Kernel

Problem:

@ Checking if a given k: X x X — R fulfills the conditions for a
kernel is difficult:

@ We need to prove or disprove
n
ij=1
for any set x1,...,x, € X and any t € R" for any n € N.
Workaround:

@ It is easy to construct functions k that are positive definite
kernels.

Constructing Kernels

1) We can construct kernels from scratch:
@ Forany p: X — R™, k(z,2") = (p(x), o(z'))rm is a kernel.
o If d: X x X — R is a distance function, i.e.
o d(z,2') >0 forall z,2' € X,
e d(z,2') =0 only for z = 2/,
o d(z,2')=d(z',x) forall z,2' € X,
o d(z,2') < d(z,2")+ d(2",2") forall z,2',2" € X,

then k(z,2') := exp(—d(z,2’)) is a kernel.

Constructing Kernels

1) We can construct kernels from scratch:
@ Forany p: X — R™, k(z,2") = (p(x), p(z'))gm is a kernel.

o If d: X x X — R is a distance function, i.e.
e d(z,2') >0 forall z,2/ € X,
e d(z,2') =0 only for z = 2/,
o d(z,2')=d(z',x) forall z,2' € X,
o d(z,2') < d(z,2")+ d(2",2") forall z,2',2" € X,

then k(z,2') := exp(—d(z,2’)) is a kernel.
2) We can construct kernels from other kernels:

@ if kis a kernel and o > 0, then ak and k + « are kernels.
o if ky, ko are kernels, then ki + ks and ky - ko are kernels.

Constructing Kernels

Examples for kernels for X = R
@ any linear combination 3, a;k; with a; > 0,
@ polynomial kernels k(z,z") = (1 + (z,2))™, m >0
@ Gaussian or RBF k(z,2') = exp (—M) with o > 0,

202

Constructing Kernels

Examples for kernels for X = R
@ any linear combination 3, a;k; with a; > 0,
@ polynomial kernels k(z,z") = (1 + (z,2))™, m >0
@ Gaussian or RBF k(z,1") = exp (—M) with o > 0,

202

Examples for kernels for other X’:
o k(h,h') =37 min(h;, h}) for n-bin histograms h, h'.

T

@ k(p,p') = exp(—KL(p,p')) with KL the symmetrized
KL-divergence between positive probability distributions.

@ k(s,s') =exp(—D(s,s')) for strings s, s and D = edit distance

Constructing Kernels

Examples for kernels for X = R
@ any linear combination 3, a;k; with a; > 0,
@ polynomial kernels k(z,z") = (1 + (z,2))™, m >0
@ Gaussian or RBF k(z,1") = exp (—M) with o > 0,

202
Examples for kernels for other X’:
o k(h,h') =37 min(h;, h}) for n-bin histograms h, h'.

@ k(p,p') = exp(—KL(p,p')) with KL the symmetrized
KL-divergence between positive probability distributions.

@ k(s,s') =exp(—D(s,s')) for strings s, s and D = edit distance
Examples for functions X x X — R that are not kernels:

o tanh (k(z,2’) +0) (matrix K;; can have negative eigenvalues)

Kernels in Computer Vision

X = { images }, treat feature extraction as part of kernel definition

@ OCR/handwriting recognition
> resize image, normalize brightness/contrast/rotation/skew
» polynomial kernel k(z,z') = (1 + (z,2'))%, d >0
[DeCoste, Scholkopf. ML2002]

@ Pedestrian detection

> resize image, calculate local intensity gradient directions

» local thresholding + linear kernel [Dalal, Triggs. CVPR 2005]
or
local L'-normalization + histogram intersection kernel
[Maji, Berg, Malik. CVPR 2008]

Kernels in Computer Vision

X = { images }, treat feature extraction as part of kernel definition
@ object category recognition
» extract local image descriptors, e.g. SIFT
» calculate multi-level pyramid histograms hb*(z)
» pyramid match kernel [Grauman, Darrell. ICCV 2005]

211

kPMK x, :E ZQZ Zmln (hlk hlk())
=1

] scene/object category recognition
» extract local image descriptors, e.g. SIFT
» quantize descriptors into bag-of-words histograms
» x2-kernel [Puzicha, Buhmann, Rubner, Tomasi. ICCV1999]

iz (h, 1) = exp (=x*(h,) for v >0

K h_hl)2
th/ _ (k k
X*(h, ') ;—hﬁ%

Linear methods are popular and well understood
@ classification, regression, dimensionality reduction, ...

Kernels are at the same time...
1) Similarity measure between (arbitrary) objects,
2) Scalar products in a (hidden) vector space.

Kernelization can make linear techniques more powerful
@ implicit preprocessing, non-linear in the original data.
o still linear in some feature space = still intuitive/interpretable

Kernels can be defined over arbitrary inputs, e.g. images
@ unified framework for all preprocessing steps

o different features, normalization, etc., becomes kernel choices

What did we not see?

We have skipped the largest part of theory on kernel methods:

@ Optimization
» Dualization
» Algorithms to train SVMs

@ Kernel Design
» Systematic methods to construct data-dependent kernels.

@ Statistical Interpretations

» What do we assume about samples?
» What performance can we expect?

@ Generalization Bounds

» The test error of a (kernelized) linear classifier can be
controlled using its modelling error and its training error.

@ "Support Vectors”

This and much more in standard references.

Selecting and Combining Kernels

Selecting From Multiple Kernels

Typically, one has many different kernels to choose from:
o different functional forms
» linear, polynomial, RBF, ...
o different parameters
» polynomial degree, Gaussian bandwidth, ...

Selecting From Multiple Kernels

Typically, one has many different kernels to choose from:
o different functional forms
» linear, polynomial, RBF, ...
o different parameters
» polynomial degree, Gaussian bandwidth, ...

Different image features give rise to different kernels
@ Color histograms,
o SIFT bag-of-words,
e HOG,
@ Pyramid match,
@ Spatial pyramids, ...

Selecting From Multiple Kernels

Typically, one has many different kernels to choose from:
o different functional forms
» linear, polynomial, RBF, ...
o different parameters
» polynomial degree, Gaussian bandwidth, ...

Different image features give rise to different kernels
@ Color histograms,
o SIFT bag-of-words,
e HOG,
@ Pyramid match,
@ Spatial pyramids, ...

How to choose?
o Ideally, based on the kernels’ performance on task at hand:
» estimate by cross-validation or validation set error
@ Classically part of “Model Selection™.

Kernel Parameter Selection

Note: Model Selection makes a differencel
@ Action Classification, KTH dataset

Method Accuracy
Dollar et al. VS-PETS 2005: "SVM classifier* 80.66
Nowozin et al., ICCV 2007: "baseline RBF* 85.19

@ identical features, same kernel function

o difference: Nowozin used cross-validation for model selection
(bandwidth and ()

Note: there is no overfitting involved here. Model selection is fully
automatic and uses only training data.

Kernel Parameter Selection

Rule of thumb for kernel parameters
@ For kernels based on the exponential function

k(z,2') = exp(—%X(x, ')

with any X, set
Y R mean; j—1,..n X(:Uiv xj)'

Sometimes better: use only X(z;, z;) with y; # y;.

@ In general, if there are several classes, then the kernel matrix:
Kij = k(l‘z, iL’j)

should have a block structure w.r.t. the classes.

o
»
—0.5 % * e

=20 —10 00 1.0

two moons

0
10
20
30

40

0 10 20 30 40 50,

v =0.01

0 10 20 30 40 50

v =100

0 10 20

= e e
0 10 20 30 40 50

30 40 50

label “kernel”

v=0.1

0 10 20 30 40 50

~ = 1000

30 40 50

v=1

0 10 20 30 40 504,

RBF: v = 0.001

10 20 30 40

v =10

> .
0.0) v, - i =y
0.5 % \d =l
—0.5 o
- %o Dﬂﬂﬂ

~1.0

—20 -10 00 10 20

two moons

0 10 20 30 40 50,

v =0.01

0 10 20 30 40 508,

v =100

0

label “kernel”

0

e o e o
10 20 30 40 50

10 20 30 40 509

v=0.1

10 20 30 40 50

~ = 1000

0 10 20 30 40 50

i "
0 10 20 30 40 504,

linear

=0.6
ru/e of thumb

0 10 20 30 40 504,

RBF: v = 0.001

0 10 20 30 40

v =10

*
0.5) $ “é’
>

0.0) b 4 - -
®|% 80
] Dﬂﬂu

—-1.0 0.0 1.0

two moons

0
10
20
30

40

0 10 20 30 40 50,

v =0.01

0 10 20 30 40 508,

v =100

label “kernel”

= e e '
0 10 20 30 40 504

v=0.1

10 20 30 40 50

~ = 1000

|

0 10 20 30 40 504,

_|

0 10 20 30 40 50

linear

=0.6
ru/e of thumb

=1 [
0 10 20 30 40 504,

0 10 20 30 40 504,

RBF: v = 0.001

0 10 20 30 40 504,

v =10

0 10 20 30 40 50%.

=1.6
57fold cv

Kernel Selection «—~ Kernel Combination

Is there a single best kernel at all?
@ Kernels are typcally designed to capture one aspect of the data
» texture, color, edges, ...
@ Choosing one kernel means to select exactly one such aspect.

Kernel Selection «—~ Kernel Combination

Is there a single best kernel at all?
o Kernels are typcally designed to capture one aspect of the data
» texture, color, edges, ...
@ Choosing one kernel means to select exactly one such aspect.
@ Combining aspects if often better than Selecting.

Method Accuracy

Colour 60.9 + 2.1
Shape 70.2 + 1.3
Texture 63.7 £ 2.7
HOG 585 + 45
HSV 61.3 £ 0.7
siftint 706 + 1.6
siftbdy 50.4 + 3.3
combination | 85.2 =+ 1.5

Mean accuracy on Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]

Combining Two Kernels

For two kernels k;, ks:
@ product k£ = kiky is again a kernel
» Problem: very small kernel values suppress large ones

o average k = 5(ki + k») is again a kernel
» Problem: ki, ko on different scales. Re-scale first?
» convex combination kg = (1 — 3)k1 + Bk with 3 € [0, 1]

@ Model selection: cross-validate over 5 € {0,0.1,...,1}.

Combining Many Kernels

Multiple kernels: ki,... kg

@ all convex combinations are kernels:

K K
k:Zﬂjkj with ﬂjZO, Z,BZ]_
j=1 j=1
@ Kernels can be “deactivated” by 3; = 0.

@ Combinatorial explosion forbids cross-validation over all
combinations of 3;

Proxy: instead of CV, maximize SVM-objective.
@ Each combined kernel induces a feature space.

@ In which of the feature spaces can we best

> explain the training data, and
» achieve a large margin between the classes?

Feature Space View of Kernel Combination

Each kernel £; induces
@ a Hilbert Space H; and a mapping ¢; : X — H;.

The weighted kernel kfj := (;k; induces
@ the same Hilbert Space H;;, but
@ a rescaled feature mapping go/ \/>g0]

K, 2) = (6 (2), o () = f Brpi(), \/ By ()

= Bjpi(z),%(fv’» = ﬂ;k(fv,x)-

The linear combination & := Zszl B;k; induces
@ the product space H = @JKZIHJ-, and
® the product mapping $(2) := (" (2),. .., ¥ (2))'

Feature Space View of Kernel Combination

Implicit representation of a dataset using two kernels:

- — B —0—0—0—

[

Kernel k;, feature representation o1 (z1), ..., p1(z,) € Hy

i @ : @ ; ®

Kernel ky, feature representation yo(11), ..., pa(z,) € Ho

Kernel Selection would most likely pick k.
For k = (1 — B)ky + Bhky, top is § = 0, bottom is 5 = 1.

Feature Space View of Kernel Combination

£ = 0.00 margin = 0.0000

5 T T
VT006s(:) Hyx Hy
®
4t |
3k |
o |
| e ,
ok |
e
L V0.00¢1 ()

-1 0 1 2 3 4 5

Feature Space View of Kernel Combination

8 =1

5 T
v/0.00¢5(;)

0 margin = 0.1000

Hi x Hp

0
1
1
1
1
1
1
1
1
1
3| 1
1
]
1
1
1
1
1
1
1
1
1
]
1

of ® o ¢ ® o

L V1.00¢1 ()
T 0 1 2 3 4 5

Feature Space View of Kernel Combination

5 = 0.99 margin = 0.2460
5 T T T

VO.016s(z;) Hix Hy

Vv0.99¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

5 = 0.98 margin 0.3278
V00265 (1) Hy x Hy
-
- - -
- g
-
- - - -
.]
.4
.- '.’ - - . .
- -
or -7 - - @ |
Phe - -
L~ -’ s
) - ‘ ‘ ‘ | V0.98¢1(x:)

-1 0 1 2 3 4 5

Feature Space View of Kernel Combination

g =097 margin = 0.3809
5 T T T

V0.0365 () Hix Hy

V0.97¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

5 = 0.95 margin = 0.4515

5 ; ; ;
V0050, (;) Hy x Hy

V0.95¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

£ = 0.90 margin = 0.5839
5 T T T

V0.1065(z;) Hix Hy

P V0.9061 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

5 = 0.80 margin = 0.7194

5 ‘ : : -
’
V206s(1,) Ho x A
A
N
ol
N
’
4
of .-
v
L s V0806 ()

-1 0 1 2 3 1 5

Feature Space View of Kernel Combination

g = 0.70 margin = 0.7699
5 T T T

V0.30¢2(2:) e H

e ‘ V0.70¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

£ = 0.65 margin = 0.7770
5 T T T

V03560 (x1) . Hy X Hz'/

V0.65¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

£ = 0.60 margin = 0.7751
5 ‘ ‘ —

4
VO0A065(1) . Hi % H
4

V0.60¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

£ = 0.50 margin = 0.7566
5 T

V05065 () S

V0.50¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

£ = 0.40 margin = 0.7365
5 T T T

V0.6065(z;) P

L7 V0400, ()
—1 0 1 2 3 1 5

Feature Space View of Kernel Combination

£ = 0.30 margin = 0.7073
5 T T T 7
’

V0.70¢s(;) e Hix Hy ¢

V0.30¢1 ()
—1 0 1 2 3 4 5

Feature Space View of Kernel Combination

g = 0.20 margin = 0.6363

4
V0800, () . 2 Hix Hy

‘ V0.20¢1 ()
4 5

Feature Space View of Kernel Combination

£ = 0.10 margin = 0.4928

V0.90¢ () ’ ’ Hi x Hy

‘ V0.10¢1 ()
3 4 5

Feature Space View of Kernel Combination

£ = 0.03 margin = 0.2870

5 ; . ‘
]
V0.97¢(x;) ,'] Hi x Hy

4t |
3k |
o |
1k |
ok |
L V0.03¢1 ()

2 3 4 5

Feature Space View of Kernel Combination

£ = 0.02 margin = 0.2363
P i :

-~

V098¢, (;) L Hy x Hy

‘ V0.02¢1 ()
2 3 4 5

Feature Space View of Kernel Combination
5 = 0.01 margin = 0.1686
Hi x Hy

V0.99¢(2;)

‘ V0.01¢4 ()

4

5

Feature Space View of Kernel Combination

£ = 0.00 margin = 0.0000

5 T T
VT006s(:) Hyx Hy
®
4t |
3k |
o |
| e ,
ok |
e
L V0.00¢1 ()

-1 0 1 2 3 4 5

Multiple Kernel Learning

Can we calculate coefficients [3; that realize the largest margin?

@ Analyze: how does the margin depend on j3;7?

@ Remember standard SVM (here without slack variables):

: 2
min w3

subject to
yi{w, z)y > 1 fori=1,...n.

@ H and ¢ were induced by kernel k.
@ New samples are classified by f(z) = (w, z).

Multiple Kernel Learning

@ Insert
K
k(l‘, JJ,) = Z ﬁjkj(x7 JJ/) (2)
j=1

with
» Hilbert space H = ®;H;,
> feature map o(z) = (VBip1(2), ..., VBryx(2))",

» weight vector w = (wy, ..., wg)".

such that
lwlly, = 3 llwlz, (3)
(w, p(@))re = D\ Bilwy, 05(a))ae (4)

Multiple Kernel Learning

@ For fixed 3;, the largest margin hyperplane is given by
iy 3 sl

wj€H,;

subject to

in\/Eij,%(%)}Hj >1 fori=1,...n
J
@ Renaming v; = \/ij (and defining 3 = 0):

U]Han]Z @H vjll3,

Multiple Kernel Learning

@ Therefore, best hyperplane for variable 3; is given by:

min v 5
miy X gl)
Z]‘ﬁj:
B3>0
subject to
i > (v, p5(xi))r; > 1 fori=1,...n. (6)

J
@ This optimization problem is jointly-convex in v; and (3;.

@ There is a unique global minimum, and we can find it efficiently!

Multiple Kernel Learning

@ Same for soft-margin with slack-variables:

min Zﬂj |U]HH + CZfz (7)

v;€H;

2,01

subject to
yi > (v, i), > 1 =& fori=1,...n (8)
J
@ This optimization problem is jointly-convex in v; and (3;.

@ There is a unique global minimum, and we can find it efficiently!

Software for Multiple Kernel Learning

o Existing toolboxes allow Multiple-Kernel SVM training:

» Shogun (C++ with bindings to Matlab, Python etc.)

http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun

» MPI IKL (Matlab with libSVM, CoinlPopt)

http://wuw.kyb.mpg.de/bs/people/pgehler/ikl-webpage/index.html

» SimpleMKL (Matlab)

http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html

» SKMsmo (Matlab)
http://www.di.ens.fr/"fbach/ (older and slower than the others)

@ Typically, one only has to specify the set of candidate kernels
and the regularization parameter C.

MKL Toy Example

Support-vector regression to learn samples of f(¢) = sin(wt)

"2
T—x _
ki(z,2") = exp (%) with 207 € {0.005,0.05,0.5,1, 10}.
J
1 - — .
B B width 0.005 ||

08 o -~ width 0.05 |
LY v - Width 0.5
£ y — width 1
gos U= - width 10
2 o SRS
2 o4 A ‘ .

0.2 i

0

frequency

@ Multiple-Kernel Learning correctly identifies the right
bandwidth.

Combining Good Kernels

Observation: if all kernels are reasonable, simple combination
methods work as well as difficult ones (and are much faster):

Single features Combination methods
Method | Accuracy | Time | Method Accuracy | Time
Colour |60.9 +2.1 3 || product 865 £ 1.2 2
Shape |[702+13 4 || averaging 849 +19 10
Texture | 63.7 £ 2.7 3 | CG-Boost 84.8 + 2.2 | 1225
HOG 58.5 + 4.5 4 | MKL (SILP) |[85.2+15 97
HSV 61.3 + 0.7 3 || MKL (Simple) | 85.2 £ 1.5 | 152
siftint | 70.6 + 1.6 4 | LP-G 85.5 + 3.0 80
siftbdy | 59.4 + 3.3 5| LP-B 854 + 24 98

Mean accuracy and total runtime (model selection, training, testing) on
Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]

Combining Good and Bad kernels

Observation: if some kernels are helpful, but others are not, smart
techniques are better.

Performance with added noise features

N
o’

[4)]

| ——product
- —average
——CG-Boost
55/ — MKL (silp or simple)
50— LP-B

-s-LP-B
%1 5 10 . 25
no. noise features added

accuracy
o N

[2]
o

Mean accuracy on Oxford Flowers dataset [Gehler, Nowozin: 1CCV2009]

Example: Multi-Class Object Localization

MKL for joint prediction of different object classes.

@ Objects in images do not occur independently of each other.
B == . &5

@ Chairs and tables often occur together in indoor scenes.
@ Busses often occur together with cars in street scenes.

@ Chairs rarely occur together with cars.

One can make use of these dependencies to improve prediction.

Example: Multi-Class Object Localization

@ Predict candidate regions for all object classes.

@ Train a decision function for each class (red), taking into
account candidate regions for all classes (red and green).

@ Decide per-class which other object
categories are worth using

k(I,1') = BokZ(h, 1) +Zﬂjk2 hy,)

» h: feature histogram for the full image z
> hj: histogram for the region predicted for object class j in z

@ Use MKL to learn weights 3;, j =0, ..., 20.
[Lampert and Blaschko, DAGM 2008]

Example: Multi-Class Object Localization

@ Benchmark on PASCAL VOC 2006 and VOC 2007.
@ Combination improves detection accuracy (black vs. blue).

VOC2006 bicycle VOC2006 car VOC2006 cat
1 1 05
raw: AP=0.351 raw: AP=0.110 raw: AP=0.079
08 optimized: AP=0.411 08 optimized: AP=0.144 04 oplimized: AP=0.009
5% 59 59
3 i i
204 804 802
02 02 04
0 0 0
o o1 02 03 04 05 o 005 01 0.15 02 o 0.1 0.2 03 04 05
recall recall recall
VIOC2007 aeroplane VOC2007 diningtable VOC2007 sofa
1 1 1
raw: AP=0.160 raw: AP=0.049 raw: AP=0.113
08 optinized: AP=0.169 08 optimized: AP=0.101 08 optimized: AP=0.165
§°°
]
804
02
0
o 01 0.2 03 04 o 005 01 0.15 02
recall recall

Interpretation of Weights (VOC 2007):

@ Every class decision
depends on the full image
and on the object box.

@ High image weights:
— scene classification?

@ Intuitive connections:
chair — diningtable,
person — bottle,
person — dog.

@ Many classes depend on
the person class.

01234567 891011121314151617181920

aeroplane [1]
bicycle [2]
bird [3]

boat [4]
bottle [5]
bus [6]
car [7]
cat [8]
chair [9]

cow [10]
diningtable [11]
dog [12]

horse [13]
motorbike [14]
person [15]
pottedplant [16]
sheep [17]

sofa [18]
train [19]

tvmonitor [20]

rows: class to be detected
columns: class candidate boxes

Example: Multi-Class Object Localization

We can turn the non-zero weights into a dependency graph:

@ Threshold relative weights (without image component) at 0.04

@ | — j means “Class i is used to predict class j.”
@ Interpretable clusters: vehicles, indoor, animals.

Kernel Selection and Combination
@ Model selection is important to achive highest accuracy

@ Combining several kernels is often superior to selecting one

Multiple-Kernel Learning

@ Learn weights for the “best” linear kernel combination:

unified approach to feature selection/combination.
visit [Gehler, Nowozin. CVPR 2009] on Wednesday afternoon

@ Beware: MKL is no silver bullet.

Other and even simpler techniques might be superior!
Always compare against single best, averaging, product.

Warning: Caltech101/256

@ Be careful when reading kernel combination results
Many results reported rely on “broken” Bosch kernel matrices

	Title
	Overview
	Introduction to Kernel Classifiers
	Kernel Methods
	Selecting and Combining Kernels

