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Introduction to Kernel Classifiers
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Separates these two sample sets.
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Linear Regression

Find a function that interpolates data points.
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Linear Dimensionality Reduction

Reduce the dimensionality of a dataset while preserving its structure.
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Linear Techniques

Three different elementary tasks:
classification,
regression,
dimensionality reduction.

In each case, linear techniques are very successful.



Linear Techniques

Linear techniques...

often work well,
I most natural functions are smooth,
I smooth function can be approximated, at least locally, by

linear functions.

are fast and easy to solve
I elementary maths, even closed form solutions
I typically involve only matrix operation

are intuitive
I solution can be visualized geometrically,
I solution corresponds to common sense.



Example: Maximum Margin Classification

Notation:
data points X = {x1, . . . , xn}, xi ∈ Rd ,
class labels Y = {y1, . . . , yn}, yi ∈ {+1,−1}.

linear (decision) function f : Rd → R,
decide classes based on sign f : Rd → {−1, 1}.

parameterize

f (x) = a1x1 + a2x2 + . . . anxn + a0

≡ 〈w, x〉+ b with w = (a1, . . . , an), b = a0.

〈. , .〉 is the scalar product is Rd .
f is uniquely determined by w ∈ Rd and b ∈ R,
but we usually ignore b and only study w

I b can be absorbed into w. Set w′ = (w, b), x ′ = (x, 1).



Example: Maximum Margin Classification

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}.

Any w partitions the
data space into two half-spaces, i.e. defines a classifier.
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Example: Maximum Margin Classification

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}. What’s the best w?
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Not these, since they misclassify many examples.

Criterion 1: Enforce sign〈w, xi〉 = yi for i = 1, . . . , n.



Example: Maximum Margin Classification

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}. What’s the best w?
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Better not these, since they would be “risky” for future samples.

Criterion 2: Try to ensure sign〈w, x〉 = y for future (x , y) as well.



Example: Maximum Margin Classification

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}. Assume that future
samples are similar to current ones. What’s the best w?
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Maximize “stability”: use w such that we can maximally perturb the
input samples without introducing misclassifications.

Central quantity:
margin(x) = distance of x to decision hyperplane = 〈 w

‖w‖ , x〉
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Example: Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max
w∈Rd ,γ∈R+

γ

subject to

sign〈w, xi〉 = yi for i = 1, . . . n.∣∣∣∣∣〈 w
‖w‖ , xi〉

∣∣∣∣∣ ≥ γ for i = 1, . . . n.

Classify new samples using f (x) = 〈w, x〉.



Example: Maximum Margin Classification

Maximum-margin solution is determined by a maximization problem:

max
w∈Rd ,‖w‖=1

γ∈R

γ

subject to

yi〈w, xi〉 ≥ γ for i = 1, . . . n.

Classify new samples using f (x) = 〈w, x〉.



Example: Maximum Margin Classification

We can rewrite this as a minimization problem:

min
w∈Rd

‖w‖2

subject to

yi〈w, xi〉 ≥ 1 for i = 1, . . . n.

Classify new samples using f (x) = 〈w, x〉.



Example: Maximum Margin Classification

From the view of optimization theory

min
w∈Rd

‖w‖2

subject to

yi〈w, xi〉 ≥ 1 for i = 1, . . . n

is rather easy:
The objective function is differentiable and convex.
The constraints are all linear.

We can find the globally optimal w in O(n3) (or faster).



Linear Separability

What is the best w for this dataset?
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Linear Separability

The problem

min
w∈Rd
‖w‖2

subject to

yi〈w, xi〉 ≥ 1

has no solution.
The constraints con-
tradict each other! width

h
e
ig
h
t ?

We cannot find a maximum-margin hyperplane here, because there
is none. To fix this, we must allow hyperplanes that make mistakes.
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What is the best w for this dataset?
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Linear Separability

What is the best w for this dataset?
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Possibly this one, even though one sample is misclassified.
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Linear Separability

What is the best w for this dataset?
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Maybe not this one, even though all points are classified correctly.



Linear Separability

What is the best w for this dataset?
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Trade-off: large margin vs. few mistakes on training set



Solving for Soft-Margin Solution

Mathematically, we formulate the trade-off by slack-variables ξi :

min
w∈Rd ,ξi∈R+

‖w‖2 + C
n∑

i=1
ξi

subject to
yi〈w, xi〉 ≥ 1 − ξi for i = 1, . . . n.

We can fulfill every constraint by choosing ξi large enough.
The larger ξi , the larger the objective (that we try to minimize).
C is a regularization/trade-off parameter:

I small C → constraints are easily ignored
I large C → constraints are hard to ignore
I C =∞ → hard margin case → no training error

Note: The problem is still convex and efficiently solvable.



Linear Separability

So, what is the best soft-margin w for this dataset?

x

y

None. We need something non-linear!



Non-Linear Classification: Stacking

Idea 1) Use classifier output as input to other (linear) classifiers:

σ(f5(x'))

σ(f1(x)) σ(f2(x)) σ(f3(x)) σ(f4(x))

fi=<wi,x>

Multilayer Perceptron (Artificial Neural Network) or Boosting
⇒ decisions depend non-linearly on x and wj .



Non-linearity: Data Preprocessing

Idea 2) Preprocess the data:

This dataset is not
(well) linearly separable: x

y

This one is:
r

θ

In fact, both are the same dataset!
Top: Cartesian coordinates. Bottom: polar coordinates



Non-linearity: Data Preprocessing

Non-linear separation x

y

Linear
separation r

θ

Linear classifier in polar space; acts non-linearly in Cartesian space.



Generalized Linear Classifier

Given X = {x1, . . . , xn}, Y = {y1, . . . , yn}.
Given any (non-linear) feature map ϕ : Rk → Rm.
Solve the minimization for ϕ(x1), . . . , ϕ(xn) instead of
x1, . . . , xn:

min
w∈Rm ,ξi∈R+

‖w‖2 + C
n∑

i=1
ξi

subject to
yi〈w, ϕ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

The weight vector w now comes from the target space Rm.
Distances/angles are measure by the scalar product 〈. , .〉 in Rm.

Classifier f (x) = 〈w, ϕ(x)〉 is linear in w, but non-linear in x .



Example Feature Mappings

Polar coordinates:

ϕ :
(

x
y

)
7→
(√

x2 + y2

∠(x , y)

)

d-th degree polynomials:

ϕ :
(
x1, . . . , xn

)
7→
(
1, x1, . . . , xn, x2

1 , . . . , x2
n, . . . , xd

1 , . . . , xd
n

)
Distance map:

ϕ : ~x 7→
(
‖~x − ~pi‖, . . . , ‖~x − ~pN‖

)
for a set of N prototype vectors ~pi , i = 1, . . . ,N .



Is this enough?

In this example, changing the coordinates did help.
Does this trick always work?

r

θ

↔ x

y

Answer: In a way, yes!

Lemma
Let (xi)i=1,...,n with xi 6= xj for i 6= j . Let ϕ : Rk → Rm be a feature
map. If the set ϕ(xi)i=1,...,n is linearly independent, then the points
ϕ(xi)i=1,...,n are linearly separable.

Lemma
If we choose m > n large enough, we can always find a map ϕ.
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Is this enough?

Caveat: We can separate any set, not just one with “reasonable” yi :

There is a fixed feature map ϕ : R2 → R20001 such that – no matter
how we label them – there is always a hyperplane classifier that has
zero training error.
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There is a fixed feature map ϕ : R2 → R20001 such that – no matter
how we label them – there is always a hyperplane classifier that has
0 training error.



Representer Theorem

Solve the soft-margin minimization for ϕ(x1), . . . , ϕ(xn) ∈ Rm:

min
w∈Rm ,ξi∈R+

‖w‖2 + C
n∑

i=1
ξi (1)

subject to

yi〈w, ϕ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

For large m, won’t solving for w ∈ Rm become impossible?

No!

Theorem (Representer Theorem)
The minimizing solution w to problem (1) can always be written as

w =
n∑

j=1
αjϕ(xj) for coefficients α1, . . . , αn ∈ R.
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Kernel Trick

The representer theorem allows us to rewrite the optimization:

min
w∈Rm ,ξi∈R+

‖w‖2 + C
n∑

i=1
ξi

subject to

yi〈w, ϕ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

Insert w = ∑n
j=1 αjϕ(xj):



Kernel Trick

We can minimize over αi instead of w:

min
αi∈R,ξi∈R+

‖
n∑

j=1
αjϕ(xj)‖2 + C

n∑
i=1

ξi

subject to

yi〈
n∑

j=1
αjϕ(xj), ϕ(xi)〉 ≥ 1− ξi for i = 1, . . . n.



Kernel Trick

Use ‖w‖2 = 〈w,w〉:

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαk〈ϕ(xj), ϕ(xk)〉+ C
n∑

i=1
ξi

subject to

yi

n∑
j=1

αj〈ϕ(xj), ϕ(xi)〉 ≥ 1− ξi for i = 1, . . . n.

Note: ϕ only occurs in 〈ϕ(.), ϕ(.)〉 pairs.



Kernel Trick

Set 〈ϕ(x), ϕ(x ′)〉 =: k(x , x ′), called kernel function.

min
αi∈R,ξi∈R+

n∑
j,k=1

αjαkk(xj , xk) + C
n∑

i=1
ξi

subject to

yi

n∑
j=1

αjk(xj , xi) ≥ 1− ξi for i = 1, . . . n.

The maximum-margin classifier in this form with a kernel function is
often called Support-Vector Machine (SVM).



Why use k(x, x ′) instead of 〈ϕ(x), ϕ(x ′)〉?

1) Speed:
We might find an expression for k(xi , xj) that is faster to
calculate than forming ϕ(xi) and then 〈ϕ(xi), ϕ(xj)〉.

Example: 2nd-order polynomial kernel (here for x ∈ R1):

ϕ : x 7→ (1,
√

2x , x2) ∈ R3

〈ϕ(xi), ϕ(xj)〉 = 〈 (1,
√

2xi , x2
i ), (1,

√
2xj , x2

j ) 〉
= 1 + 2xixj + x2

i x2
j

But equivalently (and faster) we can calculate without ϕ:

k(xi , xj) : = (1 + xixj)2[
= 1 + 2xixj + x2

i x2
j

]



Why use k(x, x ′) instead of 〈ϕ(x), ϕ(x ′)〉?

2) Flexibility:
There are kernel functions k(xi , xj), for which we know that a
feature transformation ϕ exists, but we don’t know what ϕ is.

How that???

Theorem
Let k : X × X → R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ϕ : X → H such
that

k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉H

where 〈. , .〉H is the inner product in H.
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Positive Definite Kernel Function

Definition (Positive Definite Kernel Function)
Let X be a non-empty set. A function k : X × X → R is called
positive definite kernel function, iff

k is symmetric, i.e. k(x , x ′) = k(x ′, x) for all x , x ′ ∈ X .
For any set of points x1, . . . , xn ∈ X , the matrix

Kĳ = (k(xi , xj))i,j

is positive (semi-)definite, i.e. for all vectors t ∈ Rn:
n∑

i,j=1
tiKĳtj ≥ 0.

Note: Instead of “positive definite kernel function”, we will often
just say “kernel”.



Hilbert Spaces

Definition (Hilbert Space)
A Hilbert Space H is a vector space H with an inner product
〈. , .〉H, e.g. a mapping

〈. , .〉H : H × H → R
which is

symmetric: 〈v, v ′〉H = 〈v ′, v〉H for all v, v ′ ∈ H ,
positive definite: 〈v, v〉H ≥ 0 for all v ∈ H ,

where 〈v, v〉H = 0 only for v = ~0 ∈ H .
bilinear: 〈av, v ′〉H = a〈v, v ′〉H for v ∈ H , a ∈ R

〈v + v ′, v ′′〉H = 〈v, v ′′〉H + 〈v ′, v ′′〉H

We can treat a Hilbert space like some Rn, if we only use concepts
like vectors, angles, distances. Note: dimH =∞ is possible!



Kernels for Arbitrary Sets

Theorem
Let k : X × X → R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ϕ : X → H such
that

k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉H

where 〈. , .〉H is the inner product in H.

Translation
Take any set X and any function k : X × X → R.
If k is a positive definite kernel, then we can use k to learn a (soft)
maximum-margin classifier for the elements in X !

Note: X can be any set, e.g. X = { all images }.



How to Check if a Function is a Kernel

Problem:
Checking if a given k : X × X → R fulfills the conditions for a
kernel is difficult:
We need to prove or disprove

n∑
i,j=1

tik(xi , xj)tj ≥ 0.

for any set x1, . . . , xn ∈ X and any t ∈ Rn for any n ∈ N.
Workaround:

It is easy to construct functions k that are positive definite
kernels.



Constructing Kernels

1) We can construct kernels from scratch:
For any ϕ : X → Rm, k(x , x ′) = 〈ϕ(x), ϕ(x ′)〉Rm is a kernel.
If d : X × X → R is a distance function, i.e.
• d(x , x ′) ≥ 0 for all x , x ′ ∈ X ,
• d(x , x ′) = 0 only for x = x ′,
• d(x , x ′) = d(x ′, x) for all x , x ′ ∈ X ,
• d(x , x ′) ≤ d(x , x ′′) + d(x ′′, x ′) for all x , x ′, x ′′ ∈ X ,

then k(x , x ′) := exp(−d(x , x ′)) is a kernel.

2) We can construct kernels from other kernels:
if k is a kernel and α > 0, then αk and k + α are kernels.
if k1, k2 are kernels, then k1 + k2 and k1 · k2 are kernels.
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Constructing Kernels

Examples for kernels for X = Rd :
any linear combination ∑j αjkj with αj ≥ 0,
polynomial kernels k(x , x ′) = (1 + 〈x , x ′〉)m, m > 0
Gaussian or RBF k(x , x ′) = exp

(
−‖x−x′‖2

2σ2

)
with σ > 0,

Examples for kernels for other X :
k(h, h′) = ∑n

i=1 min(hi , h′i) for n-bin histograms h, h′.
k(p, p′) = exp(−KL(p, p′)) with KL the symmetrized
KL-divergence between positive probability distributions.
k(s, s′) = exp(−D(s, s′)) for strings s, s′ and D = edit distance

Examples for functions X × X → R that are not kernels:
tanh (κ〈x , x ′〉+ θ) (matrix Kĳ can have negative eigenvalues)
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Kernels in Computer Vision

X = { images }, treat feature extraction as part of kernel definition

OCR/handwriting recognition
I resize image, normalize brightness/contrast/rotation/skew
I polynomial kernel k(x, x ′) = (1 + 〈x, x ′〉)d , d > 0

[DeCoste, Schölkopf. ML2002]

Pedestrian detection
I resize image, calculate local intensity gradient directions
I local thresholding + linear kernel [Dalal, Triggs. CVPR 2005]

or
local L1-normalization + histogram intersection kernel
[Maji, Berg, Malik. CVPR 2008]



Kernels in Computer Vision

X = { images }, treat feature extraction as part of kernel definition
object category recognition

I extract local image descriptors, e.g. SIFT
I calculate multi-level pyramid histograms hl,k(x)
I pyramid match kernel [Grauman, Darrell. ICCV 2005]

kPMK (x, x ′) =
L∑

l=1
2l

2l−1∑
k=1

min
(
hl,k(x), hl,k(x ′)

)
scene/object category recognition

I extract local image descriptors, e.g. SIFT
I quantize descriptors into bag-of-words histograms
I χ2-kernel [Puzicha, Buhmann, Rubner, Tomasi. ICCV1999]

kχ2(h, h′) = exp
(
−γχ2(h, h′)

)
for γ > 0

χ2(h, h′) =
K∑

k=1

(hk − h′k)2

hk + h′k



Summary

Linear methods are popular and well understood
classification, regression, dimensionality reduction, ...

Kernels are at the same time...
1) Similarity measure between (arbitrary) objects,
2) Scalar products in a (hidden) vector space.

Kernelization can make linear techniques more powerful
implicit preprocessing, non-linear in the original data.
still linear in some feature space ⇒ still intuitive/interpretable

Kernels can be defined over arbitrary inputs, e.g. images
unified framework for all preprocessing steps
different features, normalization, etc., becomes kernel choices



What did we not see?

We have skipped the largest part of theory on kernel methods:
Optimization

I Dualization
I Algorithms to train SVMs

Kernel Design
I Systematic methods to construct data-dependent kernels.

Statistical Interpretations
I What do we assume about samples?
I What performance can we expect?

Generalization Bounds
I The test error of a (kernelized) linear classifier can be

controlled using its modelling error and its training error.

“Support Vectors”
This and much more in standard references.



Selecting and Combining Kernels



Selecting From Multiple Kernels

Typically, one has many different kernels to choose from:
different functional forms

I linear, polynomial, RBF, . . .
different parameters

I polynomial degree, Gaussian bandwidth, . . .

Different image features give rise to different kernels
Color histograms,
SIFT bag-of-words,
HOG,
Pyramid match,
Spatial pyramids, . . .

How to choose?
Ideally, based on the kernels’ performance on task at hand:

I estimate by cross-validation or validation set error
Classically part of “Model Selection”.
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Kernel Parameter Selection

Note: Model Selection makes a difference!
Action Classification, KTH dataset

Method Accuracy
Dollár et al. VS-PETS 2005: ”SVM classifier“ 80.66
Nowozin et al., ICCV 2007: ”baseline RBF“ 85.19

identical features, same kernel function
difference: Nowozin used cross-validation for model selection
(bandwidth and C )

Note: there is no overfitting involved here. Model selection is fully
automatic and uses only training data.



Kernel Parameter Selection

Rule of thumb for kernel parameters
For kernels based on the exponential function

k(x , x ′) = exp(−1
γ

X(x , x ′))

with any X , set

γ ≈ meani,j=1,...,n X(xi , xj).

Sometimes better: use only X(xi , xj) with yi 6= yj .
In general, if there are several classes, then the kernel matrix :

Kĳ = k(xi , xj)

should have a block structure w.r.t. the classes.
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Kernel Selection ↔ Kernel Combination

Is there a single best kernel at all?
Kernels are typcally designed to capture one aspect of the data

I texture, color, edges, . . .
Choosing one kernel means to select exactly one such aspect.

Combining aspects if often better than Selecting.

Method Accuracy
Colour 60.9 ± 2.1
Shape 70.2 ± 1.3
Texture 63.7 ± 2.7
HOG 58.5 ± 4.5
HSV 61.3 ± 0.7
siftint 70.6 ± 1.6
siftbdy 59.4 ± 3.3
combination 85.2 ± 1.5

Mean accuracy on Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]
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Combining Two Kernels

For two kernels k1, k2:
product k = k1k2 is again a kernel

I Problem: very small kernel values suppress large ones

average k = 1
2(k1 + k2) is again a kernel

I Problem: k1, k2 on different scales. Re-scale first?
I convex combination kβ = (1− β)k1 + βk2 with β ∈ [0, 1]

Model selection: cross-validate over β ∈ {0, 0.1, . . . , 1}.



Combining Many Kernels

Multiple kernels: k1,. . . ,kK

all convex combinations are kernels:

k =
K∑

j=1
βjkj with βj ≥ 0,

K∑
j=1

β = 1.

Kernels can be “deactivated” by βj = 0.
Combinatorial explosion forbids cross-validation over all
combinations of βj

Proxy: instead of CV, maximize SVM-objective.
Each combined kernel induces a feature space.
In which of the feature spaces can we best

I explain the training data, and
I achieve a large margin between the classes?



Feature Space View of Kernel Combination

Each kernel kj induces
a Hilbert Space Hj and a mapping ϕj : X → Hj .

The weighted kernel kβj
j := βjkj induces

the same Hilbert Space Hj , but
a rescaled feature mapping ϕβj

j (x) :=
√
βj ϕj(x).

kβj (x , x ′) ≡ 〈ϕβj
j (x), ϕβj

j (x ′)〉H = 〈
√
βjϕj(x),

√
βjϕj(x ′)〉H

= βj〈ϕj(x), ϕj(x ′)〉H = βjk(x , x ′).

The linear combination k̂ := ∑K
j=1 βjkj induces

the product space Ĥ := ⊕K
j=1Hj , and

the product mapping ϕ̂(x) := (ϕβ1
1 (x), . . . , ϕβn

n (x))t

k̂(x , x ′) ≡ 〈ϕ̂(x), ϕ̂(x ′)〉Ĥ =
K∑

j=1
〈ϕβj

j (x), ϕβj
j (x ′)〉H =

K∑
j=1

βjk(x , x ′)



Feature Space View of Kernel Combination

Implicit representation of a dataset using two kernels:

Kernel k1, feature representation ϕ1(x1), . . . , ϕ1(xn) ∈ H1

Kernel k2, feature representation ϕ2(x1), . . . , ϕ2(xn) ∈ H2

Kernel Selection would most likely pick k2.
For k = (1− β)k1 + βk2, top is β = 0, bottom is β = 1.



Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Feature Space View of Kernel Combination
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Multiple Kernel Learning

Can we calculate coefficients βj that realize the largest margin?
Analyze: how does the margin depend on βj?
Remember standard SVM (here without slack variables):

min
w∈H
‖w‖2

H

subject to

yi〈w, xi〉H ≥ 1 for i = 1, . . . n.

H and ϕ were induced by kernel k.
New samples are classified by f (x) = 〈w, x〉H.



Multiple Kernel Learning

Insert

k(x , x ′) =
K∑

j=1
βjkj(x , x ′) (2)

with
I Hilbert space H = ⊕jHj ,
I feature map ϕ(x) = (

√
β1ϕ1(x), . . . ,

√
βKϕK (x))t ,

I weight vector w = (w1, . . . ,wK )t .
such that

‖w‖2
H =

∑
j
‖wj‖2

Hj (3)

〈w, ϕ(xi)〉H =
∑

j

√
βj〈wj , ϕj(xi)〉Hj (4)



Multiple Kernel Learning

For fixed βj , the largest margin hyperplane is given by
min

wj∈Hj

∑
j
‖wj‖2

Hj

subject to

yi
∑

j

√
βj〈wj , ϕj(xi)〉Hj ≥ 1 for i = 1, . . . n.

Renaming vj =
√
βjwj (and defining 0

0 = 0):

min
vj∈Hj

∑
j

1
βj
‖vj‖2

Hj

subject to

yi
∑

j
〈vj , ϕj(xi)〉Hj ≥ 1 for i = 1, . . . n.



Multiple Kernel Learning

Therefore, best hyperplane for variable βj is given by:

min
vj∈Hj∑

j βj=1
βj≥0

∑
j

1
βj
‖vj‖2

Hj (5)

subject to

yi
∑

j
〈vj , ϕj(xi)〉Hj ≥ 1 for i = 1, . . . n. (6)

This optimization problem is jointly-convex in vj and βj .
There is a unique global minimum, and we can find it efficiently!



Multiple Kernel Learning

Same for soft-margin with slack-variables:

min
vj∈Hj∑

j βj=1
βj≥0
ξi∈R+

∑
j

1
βj
‖vj‖2

Hj + C
∑

i
ξi (7)

subject to

yi
∑

j
〈vj , ϕj(xi)〉Hj ≥ 1− ξi for i = 1, . . . n. (8)

This optimization problem is jointly-convex in vj and βj .
There is a unique global minimum, and we can find it efficiently!



Software for Multiple Kernel Learning

Existing toolboxes allow Multiple-Kernel SVM training:

I Shogun (C++ with bindings to Matlab, Python etc.)
http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun

I MPI IKL (Matlab with libSVM, CoinIPopt)
http://www.kyb.mpg.de/bs/people/pgehler/ikl-webpage/index.html

I SimpleMKL (Matlab)
http://asi.insa-rouen.fr/enseignants/˜arakotom/code/mklindex.html

I SKMsmo (Matlab)
http://www.di.ens.fr/˜fbach/ (older and slower than the others)

Typically, one only has to specify the set of candidate kernels
and the regularization parameter C .



MKL Toy Example

Support-vector regression to learn samples of f (t) = sin(ωt)

kj(x , x ′) = exp
(
‖x − x ′‖2

2σ2
j

)
with 2σ2

j ∈ {0.005, 0.05, 0.5, 1, 10}.

Multiple-Kernel Learning correctly identifies the right
bandwidth.



Combining Good Kernels

Observation: if all kernels are reasonable, simple combination
methods work as well as difficult ones (and are much faster):

Single features Combination methods
Method Accuracy Time Method Accuracy Time
Colour 60.9 ± 2.1 3 product 85.5 ± 1.2 2
Shape 70.2 ± 1.3 4 averaging 84.9 ± 1.9 10
Texture 63.7 ± 2.7 3 CG-Boost 84.8 ± 2.2 1225
HOG 58.5 ± 4.5 4 MKL (SILP) 85.2 ± 1.5 97
HSV 61.3 ± 0.7 3 MKL (Simple) 85.2 ± 1.5 152
siftint 70.6 ± 1.6 4 LP-β 85.5 ± 3.0 80
siftbdy 59.4 ± 3.3 5 LP-B 85.4 ± 2.4 98

Mean accuracy and total runtime (model selection, training, testing) on
Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]



Combining Good and Bad kernels

Observation: if some kernels are helpful, but others are not, smart
techniques are better.
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Mean accuracy on Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]



Example: Multi-Class Object Localization

MKL for joint prediction of different object classes.
Objects in images do not occur independently of each other.

Chairs and tables often occur together in indoor scenes.
Busses often occur together with cars in street scenes.
Chairs rarely occur together with cars.

One can make use of these dependencies to improve prediction.



Example: Multi-Class Object Localization

Predict candidate regions for all object classes.
Train a decision function for each class (red), taking into
account candidate regions for all classes (red and green).
Decide per-class which other object
categories are worth using

k(I , I ′) = β0k2
χ(h, h′) +

20∑
j=1

βjk2
χ(hj , h′j)

I h: feature histogram for the full image x
I hj : histogram for the region predicted for object class j in x

Use MKL to learn weights βj , j = 0, . . . , 20.
[Lampert and Blaschko, DAGM 2008]



Example: Multi-Class Object Localization

Benchmark on PASCAL VOC 2006 and VOC 2007.
Combination improves detection accuracy (black vs. blue).



Example: Multi-Class Object Localization

Interpretation of Weights (VOC 2007):

Every class decision
depends on the full image
and on the object box.
High image weights:
→ scene classification?
Intuitive connections:
chair → diningtable,
person → bottle,
person → dog.

Many classes depend on
the person class.

0 1 2 3 4 5 6 7 8 9 10 11121314151617181920
aeroplane [1]

bicycle [2]

bird [3]
boat [4]

bottle [5]
bus [6]
car [7]
cat [8]

chair [9]
cow [10]

diningtable [11]
dog [12]

horse [13]
motorbike [14]

person [15]

pottedplant [16]
sheep [17]

sofa [18]
train [19]

tvmonitor [20]

rows: class to be detected
columns: class candidate boxes



Example: Multi-Class Object Localization

We can turn the non-zero weights into a dependency graph:

aeroplane

boat

0.05

bicycle

bird

sheep

0.08

bottle

bus

car

0.04

0.06

0.05

train

0.05

tvmonitor

0.05

cat

0.06

person

0.04

chair

0.04

diningtable

0.20

sofa

0.09

cow

0.08

0.060.07

0.08

dog

0.06

0.05

0.09horse

0.05

0.05

0.05

motorbike

0.09

0.27 0.050.20

0.04

0.12

0.07

pottedplant

0.120.09

0.05

0.05

0.06

Threshold relative weights (without image component) at 0.04
i → j means “Class i is used to predict class j .”
Interpretable clusters: vehicles, indoor, animals.



Summary

Kernel Selection and Combination
Model selection is important to achive highest accuracy
Combining several kernels is often superior to selecting one

Multiple-Kernel Learning
Learn weights for the “best” linear kernel combination:

I unified approach to feature selection/combination.
visit [Gehler, Nowozin. CVPR 2009] on Wednesday afternoon

Beware: MKL is no silver bullet.
I Other and even simpler techniques might be superior!
I Always compare against single best, averaging, product.

Warning: Caltech101/256
Be careful when reading kernel combination results

I Many results reported rely on “broken” Bosch kernel matrices
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