Kernel Methods in Computer Vision

Christoph Lampert

Matthew Blaschko

Max Planck Institute for Biological Cybernetics, Tübingen MPI Tübingen and University of Oxford

June 20, 2009

Overview...

14:00 – 15:00 Introduction to Kernel Classifiers

15:20 – 15:50 Selecting and Combining Kernels

15:50 – 16:20 Other Kernel Methods

16:40 – 17:40 Learning with Structured Outputs

Slides and Additional Material (soon)

http://www.christoph-lampert.de

Introduction to Kernel Classifiers

Linear Classification

Separates these two sample sets.

Linear Classification

Separates these two sample sets.

Linear Classification

Linear Regression

Find a function that interpolates data points.

Linear Regression

Find a function that interpolates data points.

Least Squares Regression

Linear Dimensionality Reduction

Reduce the dimensionality of a dataset while preserving its structure.

Linear Dimensionality Reduction

Reduce the dimensionality of a dataset while preserving its structure.

Principal Component Analysis

Three different elementary tasks:

- classification,
- regression,
- dimensionality reduction.

In each case, linear techniques are very successful.

Linear techniques...

- often work well,
 - most natural functions are smooth,
 - smooth function can be approximated, at least locally, by linear functions.
- are fast and easy to solve
 - elementary maths, even closed form solutions
 - typically involve only matrix operation
- are intuitive
 - solution can be visualized geometrically,
 - solution corresponds to common sense.

Notation:

- data points $X = \{x_1, \ldots, x_n\}$, $x_i \in \mathbb{R}^d$,
- class labels $Y = \{y_1, \dots, y_n\}$, $y_i \in \{+1, -1\}$.
- linear (decision) function $f : \mathbb{R}^d \to \mathbb{R}$,
- decide classes based on $\operatorname{sign} f : \mathbb{R}^d \to \{-1, 1\}.$
- parameterize

$$\begin{split} f(x) &= a^1 x^1 + a^2 x^2 + \dots a^n x^n + a^0 \\ &\equiv \langle w, x \rangle + b \quad \text{ with } \quad w = (a^1, \dots, a^n) \text{, } b = a^0. \end{split}$$

 $\langle .\, , . \rangle$ is the scalar product is \mathbb{R}^d .

- f is uniquely determined by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$, but we usually ignore b and only study w
 - b can be absorbed into w. Set w' = (w, b), x' = (x, 1).

Given
$$X = \{x_1, \ldots, x_n\}$$
, $Y = \{y_1, \ldots, y_n\}$.

Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Any w partitions the data space into two half-spaces, i.e. defines a classifier.

Given
$$X = \{x_1, \ldots, x_n\}$$
, $Y = \{y_1, \ldots, y_n\}$. What's the best w ?

Not these, since they misclassify many examples.

Criterion 1: Enforce sign $\langle w, x_i \rangle = y_i$ for $i = 1, \ldots, n$.

Given
$$X = \{x_1, \ldots, x_n\}$$
, $Y = \{y_1, \ldots, y_n\}$. What's the best w ?

Better not these, since they would be "risky" for future samples.

Criterion 2: Try to ensure sign $\langle w, x \rangle = y$ for future (x, y) as well.

Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Assume that future samples are *similar* to current ones. What's the best w?

Maximize "stability": use w such that we can maximally perturb the input samples without introducing misclassifications.

Given $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_n\}$. Assume that future samples are *similar* to current ones. What's the best w?

Maximize "stability": use w such that we can maximally perturb the input samples without introducing misclassifications.

Central quantity: $margin(x) = distance \text{ of } x \text{ to decision hyperplane} = \langle \frac{w}{\|w\|}, x \rangle$

Maximum-margin solution is determined by a maximization problem:

 $\max_{w\in \mathbb{R}^d, \gamma\in \mathbb{R}^+}\gamma$

subject to

$$\operatorname{sign}\langle w, x_i \rangle = y_i \quad \text{for } i = 1, \dots n.$$
$$\left| \left\langle \frac{w}{\|w\|}, x_i \right\rangle \right| \ge \gamma \quad \text{for } i = 1, \dots n.$$

Classify new samples using $f(x) = \langle w, x \rangle$.

Maximum-margin solution is determined by a *maximization problem*:

$$\max_{\substack{w \in \mathbb{R}^d, \|w\| = 1\\\gamma \in \mathbb{R}}} \gamma$$

subject to

$$y_i \langle w, x_i \rangle \geq \gamma$$
 for $i = 1, \dots n$.

Classify new samples using $f(x) = \langle w, x \rangle$.

We can rewrite this as a *minimization problem*:

$$\min_{w \in \mathbb{R}^d} \|w\|^2$$

subject to

$$y_i \langle w, x_i \rangle \ge 1$$
 for $i = 1, \dots n$.

Classify new samples using $f(x) = \langle w, x \rangle$.

From the view of optimization theory

$$\min_{w \in \mathbb{R}^d} \|w\|^2$$

subject to

$$y_i \langle w, x_i \rangle \ge 1$$
 for $i = 1, \dots n$

is rather easy:

- The objective function is differentiable and convex.
- The constraints are all linear.

We can find the *globally* optimal w in $O(n^3)$ (or faster).

Not this.

Not this.

Not this.

Not this.

We cannot find a maximum-margin hyperplane here, because there is none. To fix this, we must allow hyperplanes that *make mistakes*.

Possibly this one, even though one sample is misclassified.

Maybe not this one, even though all points are classified correctly.

Trade-off: large margin vs. few mistakes on training set

Solving for Soft-Margin Solution

Mathematically, we formulate the trade-off by *slack*-variables ξ_i :

$$\min_{w \in \mathbb{R}^{d}, \xi_{i} \in \mathbb{R}^{+}} \|w\|^{2} + C \sum_{i=1}^{n} \xi_{i}$$

subject to

$$y_i \langle w, x_i \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

- We can fulfill *every* constraint by choosing ξ_i large enough.
- The larger ξ_i , the larger the objective (that we try to minimize).
- C is a *regularization*/trade-off parameter:
 - small $C \rightarrow$ constraints are easily ignored
 - large $C \rightarrow$ constraints are hard to ignore
 - $C = \infty \rightarrow$ hard margin case \rightarrow no training error
- Note: The problem is still convex and efficiently solvable.

So, what is the best soft-margin w for this dataset?

None. We need something non-linear!

Idea 1) Use classifier output as input to other (linear) classifiers:

Multilayer Perceptron (Artificial Neural Network) or *Boosting* \Rightarrow decisions depend non-linearly on x and w_j .
Non-linearity: Data Preprocessing

Idea 2) Preprocess the data:

This dataset is not (well) *linearly separable*:

This one is:

In fact, both are *the same dataset*! Top: Cartesian coordinates. Bottom: polar coordinates

Linear classifier in polar space; acts non-linearly in Cartesian space.

Generalized Linear Classifier

• Given
$$X = \{x_1, \dots, x_n\}$$
, $Y = \{y_1, \dots, y_n\}$.

- Given any (non-linear) feature map $\varphi : \mathbb{R}^k \to \mathbb{R}^m$.
- Solve the minimization for $\varphi(x_1), \ldots, \varphi(x_n)$ instead of x_1, \ldots, x_n :

$$\min_{w \in \mathbb{R}^m, \xi_i \in \mathbb{R}^+} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle w, \varphi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

• The weight vector w now comes from the target space \mathbb{R}^m .

• Distances/angles are measure by the scalar product $\langle .,. \rangle$ in \mathbb{R}^m .

• Classifier $f(x) = \langle w, \varphi(x) \rangle$ is *linear* in w, but *non-linear* in x.

Example Feature Mappings

Polar coordinates:

$$\varphi: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \sqrt{x^2 + y^2} \\ \angle(x, y) \end{pmatrix}$$

• *d*-th degree polynomials:

$$\varphi: (x_1, \ldots, x_n) \mapsto (1, x_1, \ldots, x_n, x_1^2, \ldots, x_n^2, \ldots, x_1^d, \ldots, x_n^d)$$

• Distance map:

$$\varphi: \vec{x} \mapsto \left(\| ec{x} - ec{p}_i \|, \dots, \| ec{x} - ec{p}_N \|
ight)$$

for a set of N prototype vectors \vec{p}_i , $i = 1, \ldots, N$.

Is this enough?

In this example, changing the coordinates did help. Does this trick *always* work?

Is this enough?

In this example, changing the coordinates did help. Does this trick *always* work?

Answer: In a way, yes!

Lemma

Let $(x_i)_{i=1,...,n}$ with $x_i \neq x_j$ for $i \neq j$. Let $\varphi : \mathbb{R}^k \to \mathbb{R}^m$ be a feature map. If the set $\varphi(x_i)_{i=1,...,n}$ is linearly independent, then the points $\varphi(x_i)_{i=1,...,n}$ are linearly separable.

Lemma

If we choose m > n large enough, we can always find a map φ .

Caveat: We can separate any set, not just one with "reasonable" y_i :

There is a fixed feature map $\varphi : \mathbb{R}^2 \to \mathbb{R}^{20001}$ such that – no matter how we label them – there is always a hyperplane classifier that has zero training error.

Caveat: We can separate any set, not just one with "reasonable" y_i :

There is a fixed feature map $\varphi : \mathbb{R}^2 \to \mathbb{R}^{20001}$ such that – no matter how we label them – there is always a hyperplane classifier that has 0 training error.

Representer Theorem

Solve the soft-margin minimization for $\varphi(x_1), \ldots, \varphi(x_n) \in \mathbb{R}^m$:

$$\min_{w \in \mathbb{R}^m, \xi_i \in \mathbb{R}^+} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle w, \varphi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

(1)

For large m, won't solving for $w \in \mathbb{R}^m$ become impossible?

Representer Theorem

Solve the soft-margin minimization for $\varphi(x_1), \ldots, \varphi(x_n) \in \mathbb{R}^m$:

$$\min_{w \in \mathbb{R}^m, \xi_i \in \mathbb{R}^+} \|w\|^2 + C \sum_{i=1}^n \xi_i$$
(1)

subject to

$$y_i \langle w, \varphi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

For large m, won't solving for $w \in \mathbb{R}^m$ become impossible? No!

Theorem (Representer Theorem)

The minimizing solution w to problem (1) can always be written as

$$w = \sum_{j=1}^{n} \alpha_j \varphi(x_j)$$
 for coefficients $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

The representer theorem allows us to rewrite the optimization:

$$\min_{w \in \mathbb{R}^m, \xi_i \in \mathbb{R}^+} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle w, \varphi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

Insert $w = \sum_{j=1}^{n} \alpha_j \varphi(x_j)$:

We can minimize over α_i instead of w:

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \|\sum_{j=1}^n \alpha_j \varphi(x_j)\|^2 + C \sum_{i=1}^n \xi_i$$

subject to

$$y_i \langle \sum_{j=1}^n \alpha_j \varphi(x_j), \varphi(x_i) \rangle \ge 1 - \xi_i \quad \text{for } i = 1, \dots n.$$

Use
$$||w||^2 = \langle w, w \rangle$$
:

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \sum_{j,k=1}^n \alpha_j \alpha_k \langle \varphi(x_j), \varphi(x_k) \rangle + C \sum_{i=1}^n \xi_i$$

subject to

$$y_i \sum_{j=1}^n \alpha_j \langle \varphi(x_j), \varphi(x_i) \rangle \ge 1 - \xi_i$$
 for $i = 1, \dots n$.

Note: φ only occurs in $\langle \varphi(.), \varphi(.) \rangle$ pairs.

Set $\langle \varphi(x), \varphi(x') \rangle =: k(x, x')$, called kernel function.

$$\min_{\alpha_i \in \mathbb{R}, \xi_i \in \mathbb{R}^+} \sum_{j,k=1}^n \alpha_j \alpha_k k(x_j, x_k) + C \sum_{i=1}^n \xi_i$$

subject to

$$y_i \sum_{j=1}^n \alpha_j k(x_j, x_i) \ge 1 - \xi_i \quad \text{for } i = 1, \dots n.$$

The maximum-margin classifier in this form with a kernel function is often called **Support-Vector Machine** (SVM).

Why use k(x,x') instead of $\langle \varphi(x),\varphi(x') angle$?

- 1) Speed:
 - We might find an expression for $k(x_i, x_j)$ that is faster to calculate than forming $\varphi(x_i)$ and then $\langle \varphi(x_i), \varphi(x_j) \rangle$.

Example: 2nd-order polynomial kernel (here for $x \in \mathbb{R}^1$):

$$\varphi: x\mapsto (1,\sqrt{2}x,x^2)\in \mathbb{R}^3$$

$$\langle \varphi(x_i), \varphi(x_j) \rangle = \langle (1, \sqrt{2}x_i, x_i^2), (1, \sqrt{2}x_j, x_j^2) \rangle$$

= 1 + 2x_ix_j + x_i²x_j²

But equivalently (and faster) we can calculate without φ :

$$k(x_i, x_j) := (1 + x_i x_j)^2$$
$$\begin{bmatrix} = 1 + 2x_i x_j + x_i^2 x_j^2 \end{bmatrix}$$

Why use k(x,x') instead of $\langle \varphi(x),\varphi(x') angle$?

2) Flexibility:

There are kernel functions k(x_i, x_j), for which we know that a feature transformation φ exists, but we don't know what φ is.

Why use k(x,x') instead of $\langle \varphi(x),\varphi(x') angle$?

2) Flexibility:

- There are kernel functions k(x_i, x_j), for which we know that a feature transformation φ exists, but we don't know what φ is.
- How that???

Theorem

Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a **positive definite kernel function**. Then there exists a **Hilbert Space** \mathcal{H} and a mapping $\varphi : \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

where $\langle ., . \rangle_{\mathcal{H}}$ is the inner product in \mathcal{H} .

Definition (Positive Definite Kernel Function)

Let \mathcal{X} be a non-empty set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **positive definite kernel function**, iff

- k is symmetric, i.e. k(x,x')=k(x',x) for all $x,x'\in\mathcal{X}.$
- For any set of points $x_1, \ldots, x_n \in \mathcal{X}$, the matrix

$$K_{ij} = \left(k(x_i, x_j)\right)_{i,j}$$

is positive (semi-)definite, i.e. for all vectors $t \in \mathbb{R}^n$:

$$\sum_{i,j=1}^{n} t_i K_{ij} t_j \ge 0.$$

Note: Instead of "*positive definite kernel function*", we will often just say "*kernel*".

Definition (Hilbert Space)

A **Hilbert Space** \mathcal{H} is a vector space H with an *inner product* $\langle ., . \rangle_{\mathcal{H}}$, e.g. a mapping

 $\langle ., . \rangle_{\mathcal{H}} : H \times H \to \mathbb{R}$

which is

• symmetric:
$$\langle v, v' \rangle_{\mathcal{H}} = \langle v', v \rangle_{\mathcal{H}}$$
 for all $v, v' \in H$,

• positive definite:
$$\langle v, v \rangle_{\mathcal{H}} \ge 0$$
 for all $v \in H$,
where $\langle v, v \rangle_{\mathcal{H}} = 0$ only for $v = \vec{0} \in H$

• bilinear:
$$\langle av, v' \rangle_{\mathcal{H}} = a \langle v, v' \rangle_{\mathcal{H}}$$
 for $v \in H, a \in \mathbb{R}$
 $\langle v + v', v'' \rangle_{\mathcal{H}} = \langle v, v'' \rangle_{\mathcal{H}} + \langle v', v'' \rangle_{\mathcal{H}}$

We can treat a Hilbert space like some \mathbb{R}^n , if we only use concepts like vectors, angles, distances. Note: dim $\mathcal{H} = \infty$ is possible!

Theorem

Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a **positive definite kernel function**. Then there exists a **Hilbert Space** \mathcal{H} and a mapping $\varphi : \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

where $\langle ., . \rangle_{\mathcal{H}}$ is the inner product in \mathcal{H} .

Translation

Take any set \mathcal{X} and any function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. If k is a positive definite kernel, then we can use k to learn a (soft) maximum-margin classifier for the elements in \mathcal{X} !

Note: \mathcal{X} can be any set, e.g. $\mathcal{X} = \{ all images \}$.

Problem:

- Checking if a given k : X × X → ℝ fulfills the conditions for a kernel is *difficult*:
- We need to prove or disprove

$$\sum_{i,j=1}^n t_i k(x_i, x_j) t_j \ge 0.$$

for any set $x_1, \ldots, x_n \in \mathcal{X}$ and any $t \in \mathbb{R}^n$ for any $n \in \mathbb{N}$.

Workaround:

• It is easy to *construct* functions k that are positive definite kernels.

Constructing Kernels

1) We can *construct kernels from scratch*:

- For any $\varphi: \mathcal{X} \to \mathbb{R}^m$, $k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathbb{R}^m}$ is a kernel.
- If $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a distance function, i.e.

•
$$d(x, x') \ge 0$$
 for all $x, x' \in \mathcal{X}$,

- d(x, x') = 0 only for x = x',
- $\bullet \ d(x,x')=d(x',x) \quad \text{for all } x,x'\in \mathcal{X}\text{,}$
- $\bullet \ d(x,x') \leq d(x,x'') + d(x'',x') \quad \text{for all } x,x',x'' \in \mathcal{X},$

then $k(x, x') := \exp(-d(x, x'))$ is a kernel.

1) We can *construct kernels from scratch*:

• For any $\varphi: \mathcal{X} \to \mathbb{R}^m$, $k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathbb{R}^m}$ is a kernel.

• If $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a distance function, i.e.

•
$$d(x, x') \ge 0$$
 for all $x, x' \in \mathcal{X}$,
• $d(x, x') = 0$ only for $x = x'$,
• $d(x, x') = d(x', x)$ for all $x, x' \in \mathcal{X}$,
• $d(x, x') \le d(x, x'') + d(x'', x')$ for all $x, x', x'' \in \mathcal{X}$,

then $k(x, x') := \exp(-d(x, x'))$ is a kernel.

2) We can construct kernels from other kernels:

- if k is a kernel and $\alpha > 0$, then αk and $k + \alpha$ are kernels.
- if k_1, k_2 are kernels, then $k_1 + k_2$ and $k_1 \cdot k_2$ are kernels.

Constructing Kernels

Examples for kernels for $\mathcal{X} = \mathbb{R}^d$:

- any linear combination $\sum_j \alpha_j k_j$ with $\alpha_j \ge 0$,
- polynomial kernels $k(x, x') = (1 + \langle x, x' \rangle)^m$, m > 0
- Gaussian or RBF $k(x, x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$ with $\sigma > 0$,

Examples for kernels for $\mathcal{X} = \mathbb{R}^d$:

- any linear combination $\sum_j \alpha_j k_j$ with $\alpha_j \ge 0$,
- polynomial kernels $k(x, x') = (1 + \langle x, x' \rangle)^m$, m > 0
- Gaussian or RBF $k(x, x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$ with $\sigma > 0$,

Examples for kernels for other \mathcal{X} :

- $k(h, h') = \sum_{i=1}^{n} \min(h_i, h'_i)$ for *n*-bin histograms h, h'.
- $k(p, p') = \exp(-KL(p, p'))$ with KL the symmetrized KL-divergence between positive probability distributions.
- $k(s,s') = \exp(-D(s,s'))$ for strings s,s' and D = edit distance

Examples for kernels for $\mathcal{X} = \mathbb{R}^d$:

- any linear combination $\sum_j \alpha_j k_j$ with $\alpha_j \ge 0$,
- polynomial kernels $k(x, x') = (1 + \langle x, x' \rangle)^m$, m > 0

• Gaussian or RBF $k(x, x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$ with $\sigma > 0$,

Examples for kernels for other \mathcal{X} :

• $k(h, h') = \sum_{i=1}^{n} \min(h_i, h'_i)$ for *n*-bin histograms h, h'.

- k(p, p') = exp(-KL(p, p')) with KL the symmetrized KL-divergence between positive probability distributions.
- $k(s,s') = \exp(-D(s,s'))$ for strings s,s' and D = edit distance

Examples for functions $\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ that are not kernels:

• $\tanh(\kappa \langle x, x' \rangle + \theta)$ (matrix K_{ij} can have negative eigenvalues)

 $\mathcal{X} = \{ \text{ images } \}$, treat feature extraction as part of kernel definition

- OCR/handwriting recognition
 - resize image, normalize brightness/contrast/rotation/skew
 - ▶ polynomial kernel k(x, x') = (1 + ⟨x, x'⟩)^d, d > 0 [DeCoste, Schölkopf. ML2002]
- Pedestrian detection
 - resize image, calculate local intensity gradient directions
 - local thresholding + linear kernel [Dalal, Triggs. CVPR 2005] or

local L^1 -normalization + histogram intersection kernel [Maji, Berg, Malik. CVPR 2008]

Kernels in Computer Vision

- $\mathcal{X} = \{ \textit{ images } \}, \text{ treat feature extraction as part of kernel definition}$
 - object category recognition
 - extract local image descriptors, e.g. SIFT
 - calculate multi-level pyramid histograms $h^{l,k}(x)$
 - ▶ pyramid match kernel [Grauman, Darrell. ICCV 2005]

$$k_{PMK}(x, x') = \sum_{l=1}^{L} 2^{l} \sum_{k=1}^{2^{l-1}} \min\left(h^{l,k}(x), h^{l,k}(x')\right)$$

- scene/object category recognition
 - extract local image descriptors, e.g. SIFT
 - quantize descriptors into bag-of-words histograms
 - χ^2 -kernel [Puzicha, Buhmann, Rubner, Tomasi. ICCV1999]

$$\begin{split} k_{\chi^2}(h,h') &= \exp\left(-\gamma \chi^2(h,h')\right) \quad \text{for } \gamma > 0\\ \chi^2(h,h') &= \sum_{k=1}^K \frac{(h_k - h'_k)^2}{h_k + h'_k} \end{split}$$

Summary

Linear methods are popular and well understood

• classification, regression, dimensionality reduction, ...

Kernels are at the same time...

- 1) Similarity measure between (arbitrary) objects,
- 2) Scalar products in a (hidden) vector space.

Kernelization can make linear techniques more powerful

- implicit preprocessing, *non-linear* in the original data.
- still linear in *some* feature space \Rightarrow still intuitive/interpretable

Kernels can be defined over arbitrary inputs, e.g. images

- unified framework for all preprocessing steps
- different features, normalization, etc., becomes kernel choices

What did we not see?

- We have skipped the largest part of theory on kernel methods:
 - Optimization
 - Dualization
 - Algorithms to train SVMs
 - Kernel Design
 - Systematic methods to construct data-dependent kernels.
 - Statistical Interpretations
 - What do we assume about samples?
 - What performance can we expect?
 - Generalization Bounds
 - The test error of a (kernelized) linear classifier can be controlled using its modelling error and its training error.
 - "Support Vectors"

This and much more in standard references.

Selecting and Combining Kernels

Selecting From Multiple Kernels

Typically, one has many different kernels to choose from:

- different functional forms
 - linear, polynomial, RBF,
- different parameters
 - polynomial degree, Gaussian bandwidth, ...

Typically, one has many different kernels to choose from:

- different functional forms
 - linear, polynomial, RBF,
- different parameters
 - polynomial degree, Gaussian bandwidth, ...

Different image features give rise to different kernels

- Color histograms,
- SIFT bag-of-words,
- HOG,
- Pyramid match,
- Spatial pyramids, ...

Typically, one has many different kernels to choose from:

- different functional forms
 - linear, polynomial, RBF, ...
- different parameters
 - polynomial degree, Gaussian bandwidth, ...

Different image features give rise to different kernels

- Color histograms,
- SIFT bag-of-words,
- HOG,
- Pyramid match,
- Spatial pyramids, ...

How to choose?

- Ideally, based on the kernels' *performance* on task at hand:
 - estimate by cross-validation or validation set error
- Classically part of "Model Selection".

Note: Model Selection makes a difference!

• Action Classification, KTH dataset

Method	Accuracy
Dollár et al. VS-PETS 2005: "SVM classifier"	80.66
Nowozin et al., ICCV 2007: "baseline RBF"	85.19

- identical features, same kernel function
- difference: Nowozin used cross-validation for model selection (bandwidth and C)

Note: there is *no overfitting* involved here. Model selection is fully automatic and uses only training data.

Rule of thumb for kernel parameters

• For kernels based on the exponential function

$$k(x, x') = \exp(-\frac{1}{\gamma}X(x, x'))$$

with any X, set

$$\gamma \approx \operatorname{mean}_{i,j=1,\ldots,n} X(x_i, x_j).$$

Sometimes better: use only $X(x_i, x_j)$ with $y_i \neq y_j$.

• In general, if there are several classes, then the *kernel matrix*:

$$K_{ij} = k(x_i, x_j)$$

should have a *block structure* w.r.t. the classes.

Kernel Selection \leftrightarrow Kernel Combination

Is there a single *best* kernel at all?

- Kernels are typcally designed to capture one aspect of the data
 - texture, color, edges, ...
- Choosing one kernel means to select exactly one such aspect.

$\textbf{Kernel Selection} \leftrightarrow \textbf{Kernel Combination}$

Is there a single *best* kernel at all?

- Kernels are typcally designed to capture one aspect of the data
 - texture, color, edges, ...
- Choosing one kernel means to select exactly one such aspect.
- Combining aspects if often better than Selecting.

Method	Accuracy
Colour	60.9 ± 2.1
Shape	70.2 ± 1.3
Texture	63.7 ± 2.7
HOG	58.5 ± 4.5
HSV	61.3 ± 0.7
siftint	70.6 ± 1.6
siftbdy	59.4 ± 3.3
combination	$\textbf{85.2} \pm \textbf{1.5}$

Mean accuracy on Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]

For two kernels k_1 , k_2 :

• product $k = k_1 k_2$ is again a kernel

Problem: very small kernel values suppress large ones

• average
$$k = \frac{1}{2}(k_1 + k_2)$$
 is again a kernel

- ▶ Problem: *k*₁, *k*₂ on different scales. Re-scale first?
- convex combination $k_{\beta} = (1 \beta)k_1 + \beta k_2$ with $\beta \in [0, 1]$
- Model selection: cross-validate over $\beta \in \{0, 0.1, \dots, 1\}$.

Combining Many Kernels

Multiple kernels: k_1, \ldots, k_K

• all convex combinations are kernels:

$$k = \sum_{j=1}^{K} \beta_j k_j$$
 with $\beta_j \ge 0$, $\sum_{j=1}^{K} \beta = 1$.

- Kernels can be "deactivated" by $\beta_j = 0$.
- Combinatorial explosion forbids cross-validation over all combinations of β_j

Proxy: instead of CV, maximize SVM-objective.

- Each combined kernel induces a feature space.
- In which of the feature spaces can we best
 - explain the training data, and
 - achieve a large margin between the classes?

Each kernel k_j induces

• a Hilbert Space \mathcal{H}_j and a mapping $\varphi_j : \mathcal{X} \to \mathcal{H}_j$.

The weighted kernel $k_j^{\beta_j} := \beta_j k_j$ induces

- the same Hilbert Space \mathcal{H}_j , but
- a rescaled feature mapping $\varphi_j^{\beta_j}(x) := \sqrt{\beta_j} \, \varphi_j(x)$.

$$k^{\beta_j}(x,x') \equiv \langle \varphi_j^{\beta_j}(x), \varphi_j^{\beta_j}(x') \rangle_{\mathcal{H}} = \langle \sqrt{\beta_j} \varphi_j(x), \sqrt{\beta_j} \varphi_j(x') \rangle_{\mathcal{H}} = \beta_j \langle \varphi_j(x), \varphi_j(x') \rangle_{\mathcal{H}} = \beta_j k(x,x').$$

The linear combination $\hat{k} := \sum_{j=1}^{K} \beta_j k_j$ induces

- the product space $\widehat{\mathcal{H}} := \oplus_{j=1}^{K} \mathcal{H}_j$, and
- the product mapping $\hat{\varphi}(x) := (\varphi_1^{\beta_1}(x), \dots, \varphi_n^{\beta_n}(x))^t$

$$\hat{k}(x,x') \equiv \langle \hat{\varphi}(x), \hat{\varphi}(x') \rangle_{\widehat{\mathcal{H}}} = \sum_{j=1}^{K} \langle \varphi_j^{\beta_j}(x), \varphi_j^{\beta_j}(x') \rangle_{\mathcal{H}} = \sum_{j=1}^{K} \beta_j k(x,x')$$

Implicit representation of a dataset using two kernels:

Kernel *Selection* would most likely pick k_2 .

For $k = (1 - \beta)k_1 + \beta k_2$, top is $\beta = 0$, bottom is $\beta = 1$.

Can we calculate coefficients β_j that realize the largest margin?

- Analyze: how does the margin depend on β_j ?
- Remember standard SVM (here without slack variables):

 $\min_{w\in\mathcal{H}} \|w\|_{\mathcal{H}}^2$

$$y_i \langle w, x_i \rangle_{\mathcal{H}} \ge 1$$
 for $i = 1, \dots n$.

- \mathcal{H} and φ were induced by kernel k.
- New samples are classified by $f(x) = \langle w, x \rangle_{\mathcal{H}}$.

Multiple Kernel Learning

Insert

$$k(x, x') = \sum_{j=1}^{K} \beta_j k_j(x, x')$$
 (2)

with

- Hilbert space $\mathcal{H} = \oplus_j \mathcal{H}_j$,
- feature map $\varphi(x) = (\sqrt{\beta_1}\varphi_1(x), \dots, \sqrt{\beta_K}\varphi_K(x))^t$,
- weight vector $w = (w_1, \ldots, w_K)^t$.

such that

$$\|w\|_{\mathcal{H}}^{2} = \sum_{j} \|w_{j}\|_{\mathcal{H}_{j}}^{2}$$

$$\langle w, \varphi(x_{i}) \rangle_{\mathcal{H}} = \sum_{j} \sqrt{\beta_{j}} \langle w_{j}, \varphi_{j}(x_{i}) \rangle_{\mathcal{H}_{j}}$$

$$(4)$$

Multiple Kernel Learning

• For fixed β_j , the largest margin hyperplane is given by $\min_{w_j \in \mathcal{H}_j} \sum_j \|w_j\|_{\mathcal{H}_j}^2$

subject to

$$y_i \sum_j \sqrt{\beta_j} \langle w_j, \varphi_j(x_i) \rangle_{\mathcal{H}_j} \ge 1$$
 for $i = 1, \dots n$.

• Renaming
$$v_j = \sqrt{\beta_j} w_j$$
 (and defining $\frac{0}{0} = 0$):
$$\min_{v_j \in \mathcal{H}_j} \sum_j \frac{1}{\beta_j} ||v_j||_{\mathcal{H}_j}^2$$

$$y_i \sum_j \langle v_j, \varphi_j(x_i) \rangle_{\mathcal{H}_j} \ge 1$$
 for $i = 1, \dots n$.

• Therefore, best hyperplane for variable β_j is given by:

$$\min_{\substack{v_j \in \mathcal{H}_j \\ \sum_j \beta_j = 1 \\ \beta_j \ge 0}} \sum_j \frac{1}{\beta_j} \|v_j\|_{\mathcal{H}_j}^2$$
(5)

$$y_i \sum_j \langle v_j, \varphi_j(x_i) \rangle_{\mathcal{H}_j} \ge 1$$
 for $i = 1, \dots n.$ (6)

- This optimization problem is *jointly-convex* in v_j and β_j .
- There is a unique global minimum, and we can find it efficiently!

• Same for *soft-margin* with slack-variables:

$$\min_{\substack{v_j \in \mathcal{H}_j \\ \sum_j \beta_j = 1 \\ \beta_j \ge 0 \\ \xi_i \in \mathbb{R}^+}} \sum_j \frac{1}{\beta_j} \|v_j\|_{\mathcal{H}_j}^2 + C \sum_i \xi_i$$
(7)

$$y_i \sum_j \langle v_j, \varphi_j(x_i) \rangle_{\mathcal{H}_j} \ge 1 - \xi_i \quad \text{for } i = 1, \dots n.$$
 (8)

- This optimization problem is *jointly-convex* in v_j and β_j .
- There is a unique global minimum, and we can find it efficiently!

Software for Multiple Kernel Learning

- Existing toolboxes allow Multiple-Kernel SVM training:
 - Shogun (C++ with bindings to Matlab, Python etc.) http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun
 - MPI IKL (Matlab with libSVM, CoinIPopt) http://www.kyb.mpg.de/bs/people/pgehler/ikl-webpage/index.html
 - SimpleMKL (Matlab) http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
 - SKMsmo (Matlab) http://www.di.ens.fr/~fbach/ (older and slower than the others)
- Typically, one only has to specify the set of candidate kernels and the regularization parameter *C*.

MKL Toy Example

Support-vector regression to learn samples of $f(t) = \sin(\omega t)$

$$k_j(x, x') = \exp\left(\frac{\|x - x'\|^2}{2\sigma_j^2}\right)$$
 with $2\sigma_j^2 \in \{0.005, 0.05, 0.5, 1, 10\}.$

 Multiple-Kernel Learning correctly identifies the right bandwidth.
Observation: if all kernels are reasonable, simple combination methods work as well as difficult ones (and are much faster):

Single features			Combination methods		
Method	Accuracy	Time	Method	Accuracy	Time
Colour	60.9 ± 2.1	3	product	85.5 ± 1.2	2
Shape	70.2 ± 1.3	4	averaging	84.9 ± 1.9	10
Texture	63.7 ± 2.7	3	CG-Boost	84.8 ± 2.2	1225
HOG	58.5 ± 4.5	4	MKL (SILP)	85.2 ± 1.5	97
HSV	61.3 ± 0.7	3	MKL (Simple)	85.2 ± 1.5	152
siftint	70.6 ± 1.6	4	LP- β	85.5 ± 3.0	80
siftbdy	59.4 ± 3.3	5	LP-B	85.4 ± 2.4	98

Mean accuracy and total runtime (model selection, training, testing) on Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]

Observation: if some kernels are helpful, but others are not, smart techniques are better.

Mean accuracy on Oxford Flowers dataset [Gehler, Nowozin: ICCV2009]

MKL for joint prediction of different object classes.

• Objects in images do not occur independently of each other.

- Chairs and tables often occur together in indoor scenes.
- Busses often occur together with cars in street scenes.
- Chairs rarely occur together with cars.

One can make use of these dependencies to improve prediction.

- Predict candidate regions for all object classes.
- Train a decision function for each class (red), taking into account candidate regions *for all classes* (red and green).
- Decide per-class which other object categories are worth using

$$k(I, I') = \beta_0 k_{\chi}^2(h, h') + \sum_{j=1}^{20} \beta_j k_{\chi}^2(h_j, h'_j)$$

- h: feature histogram for the full image x
- ▶ h_j: histogram for the region predicted for object class j in x

• Use MKL to learn weights β_j , $j = 0, \ldots, 20$.

[Lampert and Blaschko, DAGM 2008]

- Benchmark on PASCAL VOC 2006 and VOC 2007.
- Combination improves detection accuracy (black vs. blue).

Interpretation of Weights (VOC 2007):

- Every class decision depends on the *full image* and on the *object box*.
- High *image* weights:
 → scene classification?
- Intuitive connections: *chair* → *diningtable*, *person* → *bottle*, *person* → *dog*.
- Many classes depend on the *person* class.

rows: class to be detected columns: class candidate boxes

We can turn the non-zero weights into a dependency graph:

- $\bullet\,$ Threshold relative weights (without image component) at 0.04
- $i \rightarrow j$ means "Class i is used to predict class j."
- Interpretable clusters: vehicles, indoor, animals.

Summary

Kernel Selection and Combination

- Model selection is important to achive highest accuracy
- Combining several kernels is often superior to selecting one

Multiple-Kernel Learning

- Learn weights for the "best" linear kernel combination:
 - unified approach to feature selection/combination.
 visit [Gehler, Nowozin. CVPR 2009] on Wednesday afternoon
- Beware: MKL is no silver bullet.
 - Other and even simpler techniques might be superior!
 - Always compare against *single best*, *averaging*, *product*.

Warning: Caltech101/256

- Be careful when reading kernel combination results
 - Many results reported rely on "broken" Bosch kernel matrices