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@ Kernel Ridge Regression

o Kernel PCA

@ Spectral Clustering

@ Kernel Covariance and Canonical Correlation Analysis
@ Kernel Measures of Independence



Kernel Ridge Regression

@ Regularized least squares regression:
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Kernel Ridge Regression

@ Regularized least squares regression:

mlnz (w, 7:))* + A w|?

@ Replace w with > | o;
2
n n
mlnz Y — Z T, z) |+ )\ZZaiaj(xi,xj)
j=1 i—1 j=1
@ o™ can be solved in closed form solution

= (K+ )"



Equivalent formulations:
@ Minimize squared error between original data and a projection of
our data into a lower dimensional subspace
@ Maximize variance of projected data
Solutions: Eigenvectors of the empirical covariance matrix
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(fio- Trictan lehan)



PCA continued

@ Empirical covariance matrix (biased):

@:

SRS
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A

where p1 is the sample mean.
o (' is positive (semi-)definite symmetric

o PCA: .
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v fJwlf?



Data Centering

@ We use the notation X to denote the design matrix where every
column of X is a data sample

@ We can define a centering matrix
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Data Centering

@ We use the notation X to denote the design matrix where every
column of X is a data sample

@ We can define a centering matrix
L r

H=1—- —e¢e¢
n

where e is a vector of all ones

@ H is idempotent, symmetric, and positive semi-definite (rank
n—1)

@ The design matrix of centered data can be written compactly in
matrix form as XH

» The ith column of XH is equal to x; — u, where p = %Zj 7 is
the sample mean



Kernel PCA

o PCA:

o Kernel PCA:
» Replace w by Y, a;(z; — p) - this can be represented compactly
in matrix form by w = XHa where X is the design matrix, H is
the centering matrix, and « is the coefficient vector.
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Kernel PCA

o PCA:

@ Kernel PCA:

» Replace w by Y, a;(z; — p) - this can be represented compactly
in matrix form by w = XHa where X is the design matrix, H is
the centering matrix, and « is the coefficient vector.

» Compute C' in matrix form as C = %XHXT

» Denote the matrix of pairwise inner products K = X7 X i.e.
Kij = (i, 7))

wT Cw 1 a”HKHKH o
——— =maxX ————————
v ||wl? a n aTHKH«a
This is a Rayleigh quotient with known solution

HKH(; = Aif3;



Kernel PCA

@ Set [ to be the eigenvectors of HKH, and \ the corresponding
eigenvalues

@ Seta = ﬁ)\*%

Example, image super-resolution:

10x10

A
A E

(fig: Kim et al., PAMI 2005.)
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@ Kernel Ridge Regression

o Kernel PCA

@ Spectral Clustering

@ Kernel Covariance and Canonical Correlation Analysis
@ Kernel Measures of Independence



Spectral Clustering

@ Represent similarity of images by weights on a graph
@ Normalized cuts optimizes the ratio of the cost of a cut and the
volume of each cluster
. _
cut(A;, A;
NCUt(Al, e ,Ak) = Z (—A)z)

= wol(



Spectral Clustering

@ Represent similarity of images by weights on a graph

@ Normalized cuts optimizes the ratio of the cost of a cut and the
volume of each cluster

k
Neut(Ar, ..., Ax) =

@ Exact optimization is NP-hard, but relaxed version can be solved
by finding the eigenvalues of the graph Laplacian

L=]—D3AD3

where D is the diagonal matrix with entries equal to the row
sums of similarity matrix, A.



Spectral Clustering (continued)

o Compute L =1 — D 2AD 3.
@ Map data points based on the eigenvalues of £
Example, handwritten digits (0-9):

Laplacian Eigenmap

(fig: Xiaofei He)
@ Cluster in mapped space using k-means
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@ Kernel Measures of Independence



Multimodal Data

@ A latent aspect relates data that are present in multiple
modalities

@ e.g. images and text

Z.
y: “A view from Idyllwild, California,
with pine trees and snow capped Marion
Mountain under a blue sky."




Multimodal Data

@ A latent aspect relates data that are present in multiple
modalities

@ e.g. images and text

Z.

. “A view from Idyllwild, California,
with pine trees and snow capped Marion
Mountain under a blue sky."

@ Learn kernelized projections that relate both spaces



Kernel Covariance

@ KPCA is maximization of auto-covariance
@ Instead maximize cross-covariance
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Kernel Covariance

o KPCA is maximization of auto-covariance
@ Instead maximize cross-covariance

Wy Oy Wy
max ————uv
werty [|ag|[|wy |

@ Can also be kernelized (replace w, by >°; a;(z; — p.), etc.)

ol HK, HK, H {3
ol Vo HK,Ha 3" HK, H3

@ Solution is given by (generalized) eigenproblem

0 HIHE,HY (o) _ | (HE,H 0 a
HK,HK,H 0 3) = o HK,H)\p



Kernel Canonical Correlation Analysis

(KCCA)

@ Alternately, maximize correlation instead of covariance

T
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Kernel Canonical Correlation Analysis

(KCCA)

@ Alternately, maximize correlation instead of covariance

T
max Wy Gy Wy
Wa, Wy \/ w Cppwy wyT Cyywy

@ Kernelization is straightforward as before

o HK, HK,Hj3
max
@5 \JaT (HK,H)? afT (HK,H)* 3



KCCA (continued)

@ Problem:

@ If the data in either modality are linearly independent (as many
dimensions as data points), there exists a projection of the data
that respects any arbitrary ordering

@ Perfect correlation can always be achieved
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KCCA (continued)

@ Problem:

@ If the data in either modality are linearly independent (as many
dimensions as data points), there exists a projection of the data
that respects any arbitrary ordering

@ Perfect correlation can always be achieved
@ This is even more likely when a kernel is used (e.g. Gaussian)

@ Solution: Regularize

T
w, Cryw,

@ o+ 2l ) (] oy + 24w, 12)

@ As g, — 00, €, — 00, solution approaches maximum covariance



KCCA Algorithm

o Compute K, K,

@ Solve for o and 3 as the eigenvectors of

0 HEK,HE,H\ (o)
HEK,HK, H 0 3) =

N (HK, H) + e, HK, H 0 oY
0 (HK,H)* + ¢, HK,H ) \ 3



Content Based Image Retrieval with KCCA

@ Hardoon et al., 2004
@ Training data consists of images with text captions

@ Learn embeddings of both spaces using KCCA and appropriately
chosen image and text kernels

@ Retrieval consists of finding images whose embeddings are
related to the embedding of the text query



Content Based Image Retrieval with KCCA

@ Hardoon et al., 2004
@ Training data consists of images with text captions

@ Learn embeddings of both spaces using KCCA and appropriately
chosen image and text kernels

@ Retrieval consists of finding images whose embeddings are
related to the embedding of the text query

@ A kind of multi-variate regression



@ Kernel Ridge Regression

o Kernel PCA

@ Spectral Clustering

@ Kernel Covariance and Canonical Correlation Analysis
o Kernel Measures of Independence
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Kernel Measures of Independence

@ We know how to measure correlation in the kernelized space
@ Independence implies zero correlation

@ Different kernels encode different statistical properties of the
data

@ Use an appropriate kernel such that zero correlation in the
Hilbert space implies independence



Example: Polynomial Kernel

@ First degree polynomial kernel (i.e. linear) captures correlation
only

@ Second degree polynomial kernel captures all second order
statistics

° ..



Example: Polynomial Kernel

@ First degree polynomial kernel (i.e. linear) captures correlation
only

@ Second degree polynomial kernel captures all second order
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° ...

@ A Gaussian kernel can be written
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Example: Polynomial Kernel

@ First degree polynomial kernel (i.e. linear) captures correlation
only

@ Second degree polynomial kernel captures all second order
statistics

° ...

@ A Gaussian kernel can be written

k(azi, Jij) — e*’yllmi*ijQ — @) o2v(zi ) o= (w),a))

and we can use the identity
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@ We can view the Gaussian kernel as being related to an
appropriately scaled infinite dimensional polynomial kernel



Example: Polynomial Kernel

@ First degree polynomial kernel (i.e. linear) captures correlation
only

@ Second degree polynomial kernel captures all second order
statistics

° ...

@ A Gaussian kernel can be written

k(azi, ﬂij) — e*’yllmi*ijQ — @) o2v(zi ) o= (w),a))

and we can use the identity

_Ir—\

@ We can view the Gaussian kernel as being related to an
appropriately scaled infinite dimensional polynomial kernel
» captures all order statistics
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Hilbert-Schmidt Independence Criterion

e F RKHS on X with kernel k;(z,2"), G RKHS on ) with kernel

ky(y,9)
@ Covariance operator: Cy, : G — F such that

(f, Coyg)r = Epylf(2)g(y)] — Eulf(2)] Ey[g(y)]

@ HSIC is the Hilbert-Schmidt norm of C,, (Fukumizu et al. 2008):
HSIC = |Gyl

o (Biased) empirical HSIC:

1

HSIC = — Te(K, HK, H)



Hilbert-Schmidt Independence Criterion

(continued)

@ Ring-shaped density, correlation approx. zero

@ Maximum singular vectors (functions) of C,

15
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Hilbert-Schmidt Normalized Independence

Criterion

@ Hilbert-Schmidt Independence Criterion analogous to
cross-covariance

@ Can we construct a version analogous to correlation?
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@ Hilbert-Schmidt Independence Criterion analogous to
cross-covariance
@ Can we construct a version analogous to correlation?
@ Simple modification: decompose Covariance operator (Baker
1973)
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where V, is the normalized cross-covariance operator
(maximum singular value is bounded by 1)



Hilbert-Schmidt Normalized Independence

Criterion

@ Hilbert-Schmidt Independence Criterion analogous to
cross-covariance

@ Can we construct a version analogous to correlation?

@ Simple modification: decompose Covariance operator (Baker
1973)

1 1
Owy - Cx%: sz Cy2y
where V, is the normalized cross-covariance operator
(maximum singular value is bounded by 1)
@ Use norm of V,, instead of the norm of C,,



Hilbert-Schmidt Normalized Independence

Criterion (continued)

@ Define the normalized independence criterion to be the
Hilbert-Schmidt norm of V,,

1
HSNIC = — Ty [HEH (HK,H + e,1)”"
HE,H (HK,H +,1)"" |

where ¢, and ¢, are regularization parameters as in KCCA



Hilbert-Schmidt Normalized Independence

Criterion (continued)

@ Define the normalized independence criterion to be the
Hilbert-Schmidt norm of V,,

—— 1
HSNIC = — Ty [HEH (HK,H + e,1)”"
HE,H (HK,H +,1)"" |
where ¢, and ¢, are regularization parameters as in KCCA
@ If the kernels on z and y are characteristic (e.g. Gaussian

kernels, see Fukumizu et al., 2008)
| Coyllfs = || VayllFig = 0 iff 2 and y are independent!
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@ Independence tests - is there anything to gain from the use of
multi-modal data?
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Applications of HS(N)IC

@ Independence tests - is there anything to gain from the use of
multi-modal data?

o Kernel ICA

@ Maximize dependence with respect to some model parameters

» Kernel target alignment (Cristianini et al., 2001)

» Learning spectral clustering (Bach & Jordan, 2003) - relates
kernel learning and clustering

» Taxonomy discovery (Blaschko & Gretton, 2008)
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In this section we learned how to
@ Do basic operations in kernel space like:
» Regularized least squares regression
» Data centering
» PCA
@ Learn with multi-modal data
» Kernel Covariance
» KCCA
@ Use kernels to construct statistical independence tests
» Use appropriate kernels to capture relevant statistics
» Measure dependence by norm of (normalized) covariance
operator
» Closed form solutions requiring only kernel matrices for each
modality

@ Questions?
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What is Structured Output Learning?

@ Regression maps from an input space to an output space

g: X =Y
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What is Structured Output Learning?

@ Regression maps from an input space to an output space

g: X =Y

@ In typical scenarios, ) = R (regression) or Y = {—1,1}
(classification)

@ Structured output learning extends this concept to more
complex and interdependent output spaces



Examples of Structured Output Problems

in Computer Vision

@ Multi-class classification (Crammer & Singer, 2001)
@ Hierarchical classification (Cai & Hofmann, 2004)
@ Segmentation of 3d scan data (Anguelov et al., 2005)

@ Learning a CRF model for stereo vision (Li & Huttenlocher,
2008)

@ Object localization (Blaschko & Lampert, 2008)

@ Segmentation with a learned CRF model (Szummer et al., 2008)
° ...

@ More examples at CVPR 2009
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Generalization of Regression

@ Direct discriminative learning of g : X — )
» Penalize errors for this mapping

@ Two basic assumptions employed
» Use of a compatibility function

f:XAXxY—=R
» g takes the form of a decoding function

g(r) = argzrlaXf(w, Y)

> linear w.r.t. joint kernel

f(z,y) = (w, o(z,9))



Multi-Class Joint Feature Map

@ Simple joint kernel map:

@ define ¢, (y;) to be the vector with 1 in place of the current
class, and 0 elsewhere

py(y)=10,.... L .....0"

kth position

if 3; represents a sample that is a member of class &
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@ Simple joint kernel map:

@ define ¢, (y;) to be the vector with 1 in place of the current
class, and 0 elsewhere

py(y)=10,.... L .....0"

kth position

if 3; represents a sample that is a member of class &
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Multi-Class Joint Feature Map

@ Simple joint kernel map:

@ define ¢, (y;) to be the vector with 1 in place of the current
class, and 0 elsewhere

py(y)=10,.... L .....0"

kth position

if 3; represents a sample that is a member of class &

@ . (z;) can result from any kernel over X

ky (i, 33]') = (Pe(m:), @z(xj»

o Set ¢(z;, yi) = ¢y (vi) @ @z(;), where ® represents the
Kronecker product



Multiclass Perceptron
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Multiclass Perceptron

@ Reminder: we want

<w7 So(xh yZ)> > <w> QO(ZZH Z/)) Vy 7é Yi

@ Example: perceptron training with a multiclass joint feature map

@ Gradient of loss for example 7 is

0 if (w, oz, y5)) > (w, o(z:, Y)Yy # ys
MaXyty, 90(% il/i) - 90(%', y) otherwise

Ol yi, w) = {



Perceptron Training with Multiclass Joint

Feature Map

20=1 3=1

'-;v' III

B {=1) 7i=1

Classified as 0

(Credit: Lyndsey Pickup)
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(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint
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Classified as 8
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(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map
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Classified as 8
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(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

2 (i=6) 3 (i=6)

'-;v' II

& (i=6) 7 (i=6)

Classified a5 9
- .

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

2(=7) 30=7)

'-;v' Iﬂ

B ({i=7) 70=7

Classified as 2
- .

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

2 (i=8) 3 (=8)

'-;v' IH

& (i=6) 7 (i=a)

Classified as 5

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

2(=9 3 (=9

'-;v' IH

B (=5 7 =9

Classified as 3

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

0 (=10) (i=10) (=10
. .

4(=10) =10y (=10)

g (=10) Classified a5 9

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

0 (=11) (=113 (=113

l"' ¥
.--f

4(=11) =11y (=11)

II

g(=11) Classified as 3
. .

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

0(=12) (i=12) (i=12)
i" * l"'r
.a-l

4(=12) (=12) (=12)

(=12 Classified as 5
. .

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

0(=13) (i=13) (i=13)
i" * l"'r
.a-l

4(=13) (=13) (=13)

8 (=13 Classified a5 9
. .

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

0 (=18) (i=18) (i=15)
l"'r
.a-l

4(=15) (=15) (=13)

EI

g (=14) Classified as 0
. .

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

0 (i=16) (i=16) (i=16)
l"'r
.a-l

4(=18) 15) (i=18)

g (=186) Classified as 4

(Credit: Lyndsey Pickup)




Perceptron Training with Multiclass Joint

Feature Map

i=8958) 1 (i=9958) (I=9958) (I=9958)
i=8968) 4 (=9958) (I=59958) (I=9958)
I- —
=
1=9958) 9 (=9958) Classified as 0
Final result

(Credit: Lyndsey Pickup)



Perceptron Training with Multiclass Joint

Feature Map
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Crammer & Singer Multi-Class SVM

@ Instead of training using a perceptron, we can enforce a large
margin and do a batch convex optimization:

1 n
min  flul?+ 0y &
=1

st (w, oz, 1)) — (w,o(x,y) > 1 =& Yy # ys



Crammer & Singer Multi-Class SVM

@ Instead of training using a perceptron, we can enforce a large
margin and do a batch convex optimization:

1 n
min  flul?+ 0y &
=1

st (w, oz, 1)) — (w,o(x,y) > 1 =& Yy # ys

@ Can also be written only in terms of kernels
w= > anp(z,y)
Ty
@ Can use a joint kernel
E: XA xYxXAxY—-R

k(xia Yi, Tj, y]) = <90($w yl)’ Qo(xjﬂ y]))
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Structured Output Support Vector

Machines (SO-SVM)

@ Frame structured prediction as a multiclass problem
» predict a single element of ) and pay a penalty for mistakes
@ Not all errors are created equally

» e.g. in an HMM making only one mistake in a sequence should
be penalized less than making 50 mistakes

@ Pay a loss proportional to the difference between true and
predicted error (task dependent)

A(ys, y)



Margin Rescaling

Variant: Margin-Rescaled Joint-Kernel SVM for output space Y
(Tsochantaridis et al., 2005)

@ |dea: some wrong labels are worse than others: loss A(y;, y)

@ Solve
min [w|* + C Y&
i=1
st (w, (i, y:)) — (w, (25, 9)) 2 Ay y) =& Yy € Y\ {ui}
o Classify new samples using g : X — ):

g(z) = argmax(w, ¢(z, y))
yeY



Margin Rescaling

Variant: Margin-Rescaled Joint-Kernel SVM for output space Y
(Tsochantaridis et al., 2005)

@ |dea: some wrong labels are worse than others: loss A(y;, y)

@ Solve
min [wl* + C &
i=1
st (w, (@i, 4:)) — (w, 0(21,y)) = Ay, y) =& Yy € Y\ {yi}
@ Classify new samples using g : X — -

g(z) = argmax(w, ¢(z, y))
yeY

@ Another variant is slack rescaling (see Tsochantaridis et al.,
2005)
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@ For, e.g., handwritten character recognition, it may be useful to
include a temporal model in addition to learning each character
individually

@ As a simple example take an HMM



Label Sequence Learning

@ For, e.g., handwritten character recognition, it may be useful to
include a temporal model in addition to learning each character
individually

@ As a simple example take an HMM

@ We need to model emission probabilities and transition
probabilities
» Learn these discriminatively
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A Joint Kernel Map for Label Sequence
Learning

@ Emissions (blue)

> fe(.’l)’ia yl) = <we790e(117i7 Z/z))
» Can simply use the multi-class joint feature map for ¢,

o Transitions (green)

> ft(l’z', Z/i) = <'wtv90t(yiv yi+1)>
» Can use ©i(¥i, Yir1) = 0y (¥i) @ 0y (Yiv1)
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A Joint Kernel Map for Label Sequence
Learning (continued)

p(!I?, y) o H efe(xhyi) H eft(yi7yi+1) for an HMM
flz,y) = Zfe(l“i; yi) + th(?/i; Yir1)
= <we72_90e(l‘i,yi)> + (wuZ%(yi,?/iH))
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Constraint Generation

min |wl|>+ C> &

i=1

s.t. (w, (2, vi)) — (w, (i, y)) > Ay, y) — & Yy e Y\ {w}

@ Initialize constraint set to be empty
@ lterate until convergence:

» Solve optimization using current constraint set
» Add maximially violated constraint for current solution
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Constraint Generation with the Viterbi

Algorithm

@ To find the maximially violated constraint, we need to maximize
w.r.t. y

<w7 So(xia y)) + A(yia y)

@ For arbitrary output spaces, we would need to iterate over all
elements in Y

e For HMMs, max,(w, ¢(z;, y)) can be found using the Viterbi
algorithm

@ It is a simple modification of this procedure to incorporate
A(y:, y) (Tsochantaridis et al., 2004)



Discriminative Training of Object

Localization

@ Structured output learning is not restricted to outputs specified
by graphical models



Discriminative Training of Object

Localization

@ Structured output learning is not restricted to outputs specified
by graphical models

@ We can formulate object localization as a regression from an
image to a bounding box

g: X =Y

@ X is the space of all images
@ ) is the space of all bounding boxes



Joint Kernel between Images and Boxes:

Restriction Kernel

o Note: x|, (the image restricted to the box region) is again an
image.

@ Compare two images with boxes by comparing the images within
the boxes:

kjoint((x; y)7 (‘7’.’7 yl) ) = kimage(x |y’ 1}, |y’> )

@ Any common image kernel is applicable:
» linear on cluster histograms: k(h, k') =, hihl,
> X2-kernel: kya(h, i) = exp (—1 ¥, Bihi)”
x*-kernel: kyz2(h, ') = exp Y i R
» pyramid matching kernel, ...

@ The resulting joint kernel is positive definite.



Restriction Kernel: Examples
=y

is large.

=

is small.

could also be large.
@ Note: This behaves differently from the common tensor products

Fjoint ( (2, 9), (¢, 9/) ) # k(z, 2)k(y, ¢/)) !
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Bound

@ As before, we must solve
max(w, p(z;, y)) + A(yi, y)
yeY

where

B Area(yiny) . o B
Alys,y) = Area(y: Jv) if Y = Yo = 1
1- (%(yiwyw + 1)) otherwise

and y;, specifies whether there is an instance of the object at all
present in the image



Constraint Generation with Branch and

Bound

@ As before, we must solve

max(w, p(z;, y)) + Ay, v)
yeY

where
B Area(yiny) . o B
Ay, y) = L Area(y: Jv) if Yo =y =1
1- (%(yiwyw + 1)) otherwise

and y;, specifies whether there is an instance of the object at all
present in the image

@ Solution: use branch-and-bound over the space of all rectangles
in the image (Blaschko & Lampert, 2008)
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of a random field model
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Discriminative Training of Image

Segmentation

@ Frame discriminative image segmentation as learning parameters
of a random field model

@ Like sequence learning, the problem decomposes over cliques in
the graph

@ Set the loss to the number of incorrect pixels
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@ As the graph is loopy, we cannot use Viterbi
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Constraint Generation with Graph Cuts

@ As the graph is loopy, we cannot use Viterbi

@ Loopy belief propagation is approximate and can lead to poor
learning performance for structured output learning of graphical
models (Finley & Joachims, 2008)

@ Solution: use graph cuts (Szummer et al., 2008)
@ A(y;,y) can be easily incorporated into the energy function
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Summary of Structured Output Learning

@ Structured output learning is the prediction of items in complex
and interdependent output spaces

@ We can train regressors into these spaces using a generalization
of the support vector machine

@ We have shown examples for

» Label sequence learning with Viterbi
» Object localization with branch and bound
» Image segmentation with graph cuts

@ Questions?
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