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Overview

Kernel Ridge Regression
Kernel PCA
Spectral Clustering
Kernel Covariance and Canonical Correlation Analysis
Kernel Measures of Independence



Kernel Ridge Regression

Regularized least squares regression:

min
w

n∑
i=1

(yi − 〈w, xi〉)2 + λ‖w‖2

Replace w with ∑n
i=1 αixi

min
α

n∑
i=1

yi −
n∑

j=1
〈xi , xj〉

2

+ λ
n∑

i=1

n∑
j=1

αiαj〈xi , xj〉

α∗ can be solved in closed form solution

α∗ = (K + λI )−1 y
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PCA
Equivalent formulations:

Minimize squared error between original data and a projection of
our data into a lower dimensional subspace
Maximize variance of projected data

Solutions: Eigenvectors of the empirical covariance matrix

(fig: Tristan Jehan)



PCA continued

Empirical covariance matrix (biased):

Ĉ = 1
n
∑

i
(xi − µ)(xi − µ)T

where µ is the sample mean.

Ĉ is positive (semi-)definite symmetric

PCA:
max

w

wT Ĉw
‖w‖2



Data Centering

We use the notation X to denote the design matrix where every
column of X is a data sample
We can define a centering matrix

H = I − 1
n eeT

where e is a vector of all ones

H is idempotent, symmetric, and positive semi-definite (rank
n − 1)
The design matrix of centered data can be written compactly in
matrix form as XH

I The ith column of XH is equal to xi − µ, where µ = 1
n
∑

j xj is
the sample mean
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Kernel PCA
PCA:

max
w

wT Ĉw
‖w‖2

Kernel PCA:
I Replace w by

∑
i αi(xi − µ) - this can be represented compactly

in matrix form by w = XHα where X is the design matrix, H is
the centering matrix, and α is the coefficient vector.

I Compute Ĉ in matrix form as Ĉ = 1
n XHXT

I Denote the matrix of pairwise inner products K = XT X , i.e.
Kij = 〈xi , xj〉

max
w

wT Ĉw
‖w‖2 = max

α

1
n
αTHKHKHα
αTHKHα

This is a Rayleigh quotient with known solution

HKHβi = λiβi
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I Compute Ĉ in matrix form as Ĉ = 1
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Kernel PCA
Set β to be the eigenvectors of HKH , and λ the corresponding
eigenvalues
Set α = βλ−

1
2

Example, image super-resolution:

(fig: Kim et al., PAMI 2005.)
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Spectral Clustering

Represent similarity of images by weights on a graph
Normalized cuts optimizes the ratio of the cost of a cut and the
volume of each cluster

Ncut(A1, . . . ,Ak) =
k∑

i=1

cut(Ai , Āi)
vol(Ai)

Exact optimization is NP-hard, but relaxed version can be solved
by finding the eigenvalues of the graph Laplacian

L = I − D− 1
2 AD− 1

2

where D is the diagonal matrix with entries equal to the row
sums of similarity matrix, A.
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Spectral Clustering (continued)

Compute L = I − D− 1
2 AD− 1

2 .
Map data points based on the eigenvalues of L
Example, handwritten digits (0-9):

(fig: Xiaofei He)
Cluster in mapped space using k-means
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Multimodal Data

A latent aspect relates data that are present in multiple
modalities
e.g. images and text

_^]\XYZ[z

xxqqqqqqq

&&MMMMMMM

_^]\XYZ[ϕx(x) _^]\XYZ[ϕy(y) x :y: “A view from Idyllwild, California,
with pine trees and snow capped Marion
Mountain under a blue sky.”

Learn kernelized projections that relate both spaces
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Kernel Covariance
KPCA is maximization of auto-covariance
Instead maximize cross-covariance

max
wx ,wy

wxCxywy

‖wx‖‖wy‖

Can also be kernelized (replace wx by ∑i αi(xi − µx), etc.)

maxα,β
αTHKxHKyHβ√

αTHKxHαβTHKyHβ

Solution is given by (generalized) eigenproblem(
0 HKxHKyH

HKyHKxH 0

)(
α
β

)
= λ

(
HKxH 0

0 HKyH

)(
α
β

)
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Kernel Canonical Correlation Analysis
(KCCA)

Alternately, maximize correlation instead of covariance

max
wx ,wy

wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

Kernelization is straightforward as before

max
α,β

αTHKxHKyHβ√
αT (HKxH )2 αβT (HKyH )2 β
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KCCA (continued)

Problem:
If the data in either modality are linearly independent (as many
dimensions as data points), there exists a projection of the data
that respects any arbitrary ordering
Perfect correlation can always be achieved

This is even more likely when a kernel is used (e.g. Gaussian)

Solution: Regularize

max
wx ,wy

wT
x Cxywy√

(wT
x Cxxwx + εx‖wx‖2)

(
wT

y Cyywy + εy‖wy‖2
)

As εx →∞, εx →∞, solution approaches maximum covariance
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KCCA Algorithm

Compute Kx , Ky

Solve for α and β as the eigenvectors of(
0 HKxHKyH

HKyHKxH 0

)(
α
β

)
=

λ

(
(HKxH )2 + εxHKxH 0

0 (HKyH )2 + εyHKyH

)(
α
β

)



Content Based Image Retrieval with KCCA

Hardoon et al., 2004
Training data consists of images with text captions
Learn embeddings of both spaces using KCCA and appropriately
chosen image and text kernels
Retrieval consists of finding images whose embeddings are
related to the embedding of the text query

A kind of multi-variate regression
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Kernel Measures of Independence

We know how to measure correlation in the kernelized space

Independence implies zero correlation

Different kernels encode different statistical properties of the
data

Use an appropriate kernel such that zero correlation in the
Hilbert space implies independence
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Example: Polynomial Kernel
First degree polynomial kernel (i.e. linear) captures correlation
only
Second degree polynomial kernel captures all second order
statistics
...

A Gaussian kernel can be written

k(xi , xj) = e−γ‖xi−xj‖2 = e−γ〈xi ,xi〉e2γ〈xi ,xj〉e−γ〈xj ,xj〉

and we can use the identity

ez =
∞∑

i=1

1
i!z

i

We can view the Gaussian kernel as being related to an
appropriately scaled infinite dimensional polynomial kernel

I captures all order statistics
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Hilbert-Schmidt Independence Criterion
F RKHS on X with kernel kx(x , x ′), G RKHS on Y with kernel
ky(y, y ′)

Covariance operator: Cxy : G → F such that

〈f ,Cxyg〉F = Ex,y[f (x)g(y)]− Ex [f (x)]Ey[g(y)]

HSIC is the Hilbert-Schmidt norm of Cxy (Fukumizu et al. 2008):

HSIC := ‖Cxy‖2
HS

(Biased) empirical HSIC:

ĤSIC := 1
n2 Tr(KxHKyH )



Hilbert-Schmidt Independence Criterion
F RKHS on X with kernel kx(x , x ′), G RKHS on Y with kernel
ky(y, y ′)
Covariance operator: Cxy : G → F such that

〈f ,Cxyg〉F = Ex,y[f (x)g(y)]− Ex [f (x)]Ey[g(y)]

HSIC is the Hilbert-Schmidt norm of Cxy (Fukumizu et al. 2008):

HSIC := ‖Cxy‖2
HS

(Biased) empirical HSIC:
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Hilbert-Schmidt Independence Criterion
(continued)

Ring-shaped density, correlation approx. zero
Maximum singular vectors (functions) of Cxy
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Hilbert-Schmidt Normalized Independence
Criterion

Hilbert-Schmidt Independence Criterion analogous to
cross-covariance
Can we construct a version analogous to correlation?

Simple modification: decompose Covariance operator (Baker
1973)

Cxy = C
1
2xxVxyC

1
2yy

where Vxy is the normalized cross-covariance operator
(maximum singular value is bounded by 1)
Use norm of Vxy instead of the norm of Cxy
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Hilbert-Schmidt Normalized Independence
Criterion (continued)

Define the normalized independence criterion to be the
Hilbert-Schmidt norm of Vxy

ĤSNIC := 1
n2 Tr

[
HKxH (HKxH + εxI )−1

HKyH (HKyH + εyI )−1
]

where εx and εy are regularization parameters as in KCCA

If the kernels on x and y are characteristic (e.g. Gaussian
kernels, see Fukumizu et al., 2008)
‖Cxy‖2

HS = ‖Vxy‖2
HS = 0 iff x and y are independent!
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Applications of HS(N)IC

Independence tests - is there anything to gain from the use of
multi-modal data?

Kernel ICA
Maximize dependence with respect to some model parameters

I Kernel target alignment (Cristianini et al., 2001)
I Learning spectral clustering (Bach & Jordan, 2003) - relates

kernel learning and clustering
I Taxonomy discovery (Blaschko & Gretton, 2008)
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Summary
In this section we learned how to

Do basic operations in kernel space like:
I Regularized least squares regression
I Data centering
I PCA

Learn with multi-modal data
I Kernel Covariance
I KCCA

Use kernels to construct statistical independence tests
I Use appropriate kernels to capture relevant statistics
I Measure dependence by norm of (normalized) covariance

operator
I Closed form solutions requiring only kernel matrices for each

modality

Questions?
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What is Structured Output Learning?

Regression maps from an input space to an output space

g : X → Y

In typical scenarios, Y ≡ R (regression) or Y ≡ {−1, 1}
(classification)

Structured output learning extends this concept to more
complex and interdependent output spaces
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Examples of Structured Output Problems
in Computer Vision

Multi-class classification (Crammer & Singer, 2001)
Hierarchical classification (Cai & Hofmann, 2004)
Segmentation of 3d scan data (Anguelov et al., 2005)
Learning a CRF model for stereo vision (Li & Huttenlocher,
2008)
Object localization (Blaschko & Lampert, 2008)
Segmentation with a learned CRF model (Szummer et al., 2008)
...
More examples at CVPR 2009



Generalization of Regression

Direct discriminative learning of g : X → Y
I Penalize errors for this mapping

Two basic assumptions employed
I Use of a compatibility function

f : X × Y → R

I g takes the form of a decoding function

g(x) = argmax
y

f (x, y)

I linear w.r.t. joint kernel

f (x, y) = 〈w, ϕ(x, y)〉
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Multi-Class Joint Feature Map

Simple joint kernel map:
define ϕy(yi) to be the vector with 1 in place of the current
class, and 0 elsewhere

ϕy(yi) = [0, . . . , 1︸︷︷︸
kth position

, . . . , 0]T

if yi represents a sample that is a member of class k

ϕx(xi) can result from any kernel over X :

kx(xi , xj) = 〈ϕx(xi), ϕx(xj)〉

Set ϕ(xi , yi) = ϕy(yi)⊗ ϕx(xi), where ⊗ represents the
Kronecker product
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Multiclass Perceptron

Reminder: we want

〈w, ϕ(xi , yi)〉 > 〈w, ϕ(xi , y)〉 ∀y 6= yi

Example: perceptron training with a multiclass joint feature map
Gradient of loss for example i is

∂w`(xi , yi ,w) =

0 if 〈w, ϕ(xi , yi)〉 ≥ 〈w, ϕ(xi , y)〉∀y 6= yi

maxy 6=yi ϕ(xi , yi)− ϕ(xi , y) otherwise
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Perceptron Training with Multiclass Joint
Feature Map

Final result
(Credit: Lyndsey Pickup)
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Crammer & Singer Multi-Class SVM
Instead of training using a perceptron, we can enforce a large
margin and do a batch convex optimization:

min
w

1
2‖w‖

2 + C
n∑

i=1
ξi

s.t. 〈w, ϕ(xi , yi)〉 − 〈w, ϕ(xi , y)〉 ≥ 1− ξi ∀y 6= yi

Can also be written only in terms of kernels

w =
∑

x

∑
y
αxyϕ(x , y)

Can use a joint kernel

k : X × Y × X × Y → R

k(xi , yi , xj , yj) = 〈ϕ(xi , yi), ϕ(xj , yj)〉
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Structured Output Support Vector
Machines (SO-SVM)

Frame structured prediction as a multiclass problem
I predict a single element of Y and pay a penalty for mistakes

Not all errors are created equally
I e.g. in an HMM making only one mistake in a sequence should

be penalized less than making 50 mistakes
Pay a loss proportional to the difference between true and
predicted error (task dependent)

∆(yi , y)
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Margin Rescaling
Variant: Margin-Rescaled Joint-Kernel SVM for output space Y
(Tsochantaridis et al., 2005)

Idea: some wrong labels are worse than others: loss ∆(yi , y)
Solve

min
w
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w, ϕ(xi , yi)〉 − 〈w, ϕ(xi , y)〉 ≥ ∆(yi , y)− ξi ∀y ∈ Y \ {yi}

Classify new samples using g : X → Y :

g(x) = argmax
y∈Y

〈w, ϕ(x , y)〉

Another variant is slack rescaling (see Tsochantaridis et al.,
2005)



Margin Rescaling
Variant: Margin-Rescaled Joint-Kernel SVM for output space Y
(Tsochantaridis et al., 2005)

Idea: some wrong labels are worse than others: loss ∆(yi , y)
Solve

min
w
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w, ϕ(xi , yi)〉 − 〈w, ϕ(xi , y)〉 ≥ ∆(yi , y)− ξi ∀y ∈ Y \ {yi}

Classify new samples using g : X → Y :

g(x) = argmax
y∈Y

〈w, ϕ(x , y)〉

Another variant is slack rescaling (see Tsochantaridis et al.,
2005)



Label Sequence Learning

For, e.g., handwritten character recognition, it may be useful to
include a temporal model in addition to learning each character
individually
As a simple example take an HMM

We need to model emission probabilities and transition
probabilities

I Learn these discriminatively
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A Joint Kernel Map for Label Sequence
Learning

Emissions (blue)

I fe(xi , yi) = 〈we, ϕe(xi , yi)〉
I Can simply use the multi-class joint feature map for ϕe

Transitions (green)
I ft(xi , yi) = 〈wt , ϕt(yi , yi+1)〉
I Can use ϕt(yi , yi+1) = ϕy(yi)⊗ ϕy(yi+1)
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A Joint Kernel Map for Label Sequence
Learning (continued)

p(x , y) ∝
∏

i
efe(xi ,yi)

∏
i

eft(yi ,yi+1) for an HMM

f (x , y) =
∑

i
fe(xi , yi) +

∑
i

ft(yi , yi+1)

= 〈we,
∑

i
ϕe(xi , yi)〉+ 〈wt ,

∑
i
ϕt(yi , yi+1)〉
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Constraint Generation

min
w
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w, ϕ(xi , yi)〉 − 〈w, ϕ(xi , y)〉 ≥ ∆(yi , y)− ξi ∀y ∈ Y \ {yi}

Initialize constraint set to be empty
Iterate until convergence:

I Solve optimization using current constraint set
I Add maximially violated constraint for current solution



Constraint Generation

min
w
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w, ϕ(xi , yi)〉 − 〈w, ϕ(xi , y)〉 ≥ ∆(yi , y)− ξi ∀y ∈ Y \ {yi}

Initialize constraint set to be empty
Iterate until convergence:

I Solve optimization using current constraint set
I Add maximially violated constraint for current solution



Constraint Generation with the Viterbi
Algorithm

To find the maximially violated constraint, we need to maximize
w.r.t. y

〈w, ϕ(xi , y)〉+ ∆(yi , y)

For arbitrary output spaces, we would need to iterate over all
elements in Y
For HMMs, maxy〈w, ϕ(xi , y)〉 can be found using the Viterbi
algorithm
It is a simple modification of this procedure to incorporate
∆(yi , y) (Tsochantaridis et al., 2004)



Constraint Generation with the Viterbi
Algorithm

To find the maximially violated constraint, we need to maximize
w.r.t. y

〈w, ϕ(xi , y)〉+ ∆(yi , y)

For arbitrary output spaces, we would need to iterate over all
elements in Y

For HMMs, maxy〈w, ϕ(xi , y)〉 can be found using the Viterbi
algorithm
It is a simple modification of this procedure to incorporate
∆(yi , y) (Tsochantaridis et al., 2004)



Constraint Generation with the Viterbi
Algorithm

To find the maximially violated constraint, we need to maximize
w.r.t. y

〈w, ϕ(xi , y)〉+ ∆(yi , y)

For arbitrary output spaces, we would need to iterate over all
elements in Y
For HMMs, maxy〈w, ϕ(xi , y)〉 can be found using the Viterbi
algorithm

It is a simple modification of this procedure to incorporate
∆(yi , y) (Tsochantaridis et al., 2004)



Constraint Generation with the Viterbi
Algorithm

To find the maximially violated constraint, we need to maximize
w.r.t. y

〈w, ϕ(xi , y)〉+ ∆(yi , y)

For arbitrary output spaces, we would need to iterate over all
elements in Y
For HMMs, maxy〈w, ϕ(xi , y)〉 can be found using the Viterbi
algorithm
It is a simple modification of this procedure to incorporate
∆(yi , y) (Tsochantaridis et al., 2004)



Discriminative Training of Object
Localization

Structured output learning is not restricted to outputs specified
by graphical models

We can formulate object localization as a regression from an
image to a bounding box

g : X → Y

X is the space of all images
Y is the space of all bounding boxes
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Joint Kernel between Images and Boxes:
Restriction Kernel

Note: x |y (the image restricted to the box region) is again an
image.
Compare two images with boxes by comparing the images within
the boxes:

kjoint((x , y), (x ′, y ′) ) = kimage(x |y, x ′ |y′ , )

Any common image kernel is applicable:
I linear on cluster histograms: k(h, h′) =

∑
i hih′i ,

I χ2-kernel: kχ2(h, h′) = exp
(
− 1
γ

∑
i

(hi−h′i)2

hi+h′i

)
I pyramid matching kernel, ...

The resulting joint kernel is positive definite.



Restriction Kernel: Examples

kjoint

(
,

)
= k

(
,

)

is large.

kjoint

(
,

)
= k

(
,

)

is small.

kjoint

(
,

)
= k

(
,

)

could also be large.
Note: This behaves differently from the common tensor products

kjoint( (x , y), (x ′, y ′) ) 6= k(x , x ′)k(y, y ′)) !



Constraint Generation with Branch and
Bound

As before, we must solve

max
y∈Y
〈w, ϕ(xi , y)〉+ ∆(yi , y)

where

∆(yi , y) =

1− Area(yi
⋂

y)
Area(yi

⋃
y) if yiω = yω = 1

1−
(

1
2(yiωyω + 1)

)
otherwise

and yiω specifies whether there is an instance of the object at all
present in the image

Solution: use branch-and-bound over the space of all rectangles
in the image (Blaschko & Lampert, 2008)
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Discriminative Training of Image
Segmentation

Frame discriminative image segmentation as learning parameters
of a random field model

Like sequence learning, the problem decomposes over cliques in
the graph

Set the loss to the number of incorrect pixels
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Constraint Generation with Graph Cuts

As the graph is loopy, we cannot use Viterbi

Loopy belief propagation is approximate and can lead to poor
learning performance for structured output learning of graphical
models (Finley & Joachims, 2008)

Solution: use graph cuts (Szummer et al., 2008)
∆(yi , y) can be easily incorporated into the energy function
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Summary of Structured Output Learning

Structured output learning is the prediction of items in complex
and interdependent output spaces

We can train regressors into these spaces using a generalization
of the support vector machine

We have shown examples for
I Label sequence learning with Viterbi
I Object localization with branch and bound
I Image segmentation with graph cuts

Questions?
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