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Outline of Analysis and Compression

• BTF data dimensionality analysis

– SVD, PCA & psychophysical methods

• Methods of BTF data compression

– PCA Eigen-images

– Reflectance models

– SVD tensors

– Spherical harmonics + wavelets

– Data clustering

– Layered volumetric models

– Vector quantization

• Selected methods comparison
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BTF Sample Dimensionality Analysis

SVD of BTF data correlations

– Sample complexity ~ Dimensionality � Number of highest eigen-values of 
correlation between RGB components in moving support window (for each 
combination of view and illumination directions).

– Tested on CURET database only.

[Suen & Healey, IEEE PAMI 2000]

. . .                  

No of BTF images

No of 

correlations

. . .                  

ij = RR, RG, RB, GR, …

Typical values 5-15 (F = 0.99)
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BTF Sample Dimensionality Analysis

PCA of BTF data

– Dimensionality � number of eigen-images with the highest energy

– Typical value 30 (F = 0.9)

. . .                  . . .                  

No of BTF images

No of 

pixels

Mean BTF 

image

[Koudelka et al. TEXTURE 2003]
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Psychophysical estimation of BTF dimensionality
• Pixel-wise difference of image pairs (SSIM, VDP, CIE LAB, etc.)

• Similar images substituted by representative one

• Selection of important BTF images only

• BTF index map:
– Substituted images (index only)

– Preserved BTF images

#    >>#   

BTF Sample Dimensionality Analysis
[Filip et al. ACM TOG 2008]

Selected subset:

5-30% of original 

images 
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BTF Data Alignment Dimensionality 
Reduction

[Müller et al. 06] – BTF variance reduction by data alignment with 

respect to a local geometry. 

– Estimate per-pixel coordinate system 

maximizing ABRDFs correlation �

rotations of ABRDFs.

– Maximization � ABRDFs

represented by spherical harmonics 

in Fourier space.

– Variance reduction � higher 

compression

[Müller et al. 06]
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Compression Methods

• Compression of all BTF images at once (                         )

• Compress individual views (reflectance fields                   ) 

separately                   

Courtesy of University of BonnCourtesy of University of Bonn
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Compression Methods Taxonomy

� Compression of all BTF images at once

� ABRDF factorization

� Fitting BRDF models to pixel-wise ABRDFs

� Full BTF factorization

� Per-cluster factorization

� ABRDFs clustering + clusters compression (SVD,BRDF model)

� Compression of separate views (reflectance fields)

� Fitting BRDF models to a fixed view ABRDF data

� Per-view factorization

� Combining geometrical and reflectance information

� Multi-level vector quantization
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ABRDF Factorization Approaches

[Kautz et al. 99] – use SVD to produce two 2D factors instead of 

4D BRDF.

[McCool et al. 01] – use Homomorphic factorization to generate 

more than two positive factors.

[Suykens et al. 03] – each pixel = product of three or more two-

dimensional positive factors using chained matrix factorisation.

� factors in form of textures � interactive rendering

� low compression 
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Fitting Lafortune lobes [Lafortune et al. 07] to BRDF.

• One lobe model

– 5 parameters instead of many reflectance values

• More reflectance lobes

– Better fitting, more difficult parameters estimation

• Properties

– Generalization of cosine lobe model

– Physically plausible

– Non-linear iterative estimation of parameters, depends on initialization

– Memory efficient representation of BRDF

Fitting BRDF Reflectance Models
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Fitting BRDF Reflectance Models

[McAlister 02] – fitting pixel-wise single multi-lobe Lafortune

model (LM) to all view and illum. directions

� good compression, fast fitting

� blurry images, suitable for low-height samples only

[Daubert 01] – LM + additional iteratively obtained look-up table

� good quality for regular samples

� require to store extensive view-dependent look-up table

[McAllister 02]

[Daubert 01]
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Fitting Per-View BRDF Reflectance Models

[Meseth et al. 03] – Colour albedo-map modulated 

by a luminance Lafortune model (up to 3 lobes)

� less parameters to store

� for less specular samples only

[Filip & Haindl 04] – polynomial extension of Lafortune model

� good visual quality

� lower compression

[Meseth et al. 03]

[Filip & Haindl 04]
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[Malzbender 01] – each view direction represented by per-pixel 

polynomials.

� fast fitting

� low quality, not suitable for specular materials

[Malzbender 01]

Fitting Per-View BRDF Reflectance Models

Haindl & Filip, CVPR 2010 

SVD-Based BTF Factorization

. . .

No of BTF images
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direction
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Pixel location

Eigen-textures Eigen-ABRDFs

Haindl & Filip, CVPR 2010 

PCA-Based BTF Factorization

. . .

No of BTF images

No of 

pixels

== Illu./view

direction

BTF image reconstruction using     terms

Pixel location

SVD
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Full BTF Factorization

[Koudelka et al. 03] – PCA of all BTF images 

in texture space.

� high compression               , quality control

� long reconstruction times, lower quality

[Guthe et al. 09] – PCA of all BTF images in ABRDF space. 

– Additional transformation T to minimize visual difference

– Visual difference � spatio-temporal filtering � HVS cone responses, 
contrast sensitivity function

� high compression             , perceptual quality measure

� long compression times

[Koudelka et al.03]

[Guthe et al.09]
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[Sattler et al. 03] – PCA of all BTF images in individual view 

directions.

� fast compression & reconstruction, good visual quality

� low compression rates

[Wong & Leung 03] – compress illumination dependent data �

spherical harmonics. The coefficient planes further coded using 

a discrete wavelet transformation.

� reasonable compression, controllable by a number of components

� lower reconstruction speed – requires inverse DWT

[Sattler et al.03]

Per-View BTF Factorization
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Full BTF Factorization

[Vasilescu & Terzopoulos 03] – BTF images as vectors in 3D tensor 

� multi-modal SVD � controllable compression of view/illum. 

effects.

[Wang et al. 04] – Instead of 3D texel-illumination-view tensor, 

BTF data directly in 4D tensor � preserving spatial relationships 

in individual BTF images.

� compact representation, controllable compression

� many components interpolation slows-down rendering

[Vasilecu & Terzopoulos 03]
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Full BTF Factorization

[Ruiters & Klein 09] – sparse tensor decomposition (K-SVD) into 

small dictionary tensor and two sparse tensors.

� compact � high compression

� slow compression, long rendering times for high visual quality, no hardware 

implementation [Ruiters & Klein 09]
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Per-Cluster Factorization

[Muller et al. 03] – combination of iterative clustering of ABRDF 

data (modified K-Means) and a PCA in each cluster. Eigen-

image reconstruction error is used as a distance measure in 

the clustering process.

� high compression             , good quality

� long iterative clustering & compression times

[Muller et al.03]
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[Leung & Malik 01] – 3D textons � vocabulary of prototype tiny 

surface patches with associated local geometric and photometric 

properties. Appearance vectors � set of linear Gaussian 

derivative filter outputs.

[Liu et al. 04] – BTF sample � small number of 4D point apperance

functions (textons) multiplied by 2D geometry maps. Textons

compressed by linear factorization (SVD).

� texton based synthesis, fast HW implemented, high compression

[Liu et al.04]
[Liu et al.04]

BTF Space Clustering + Factorisation
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BTF Space Clustering + BRDF Model

[Filip & Haindl 05] – ABRDFs clustering (K-means) + polynomial 

expansion of Lafortune model in cluster centers.

� compression               , fast fitting of several ABRDFs only

� quantization artifacts
[Filip & Haindl 05]
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Combining Geometry and Reflectance

[Liu et al. 01] – spare set of small BTF image tiles combined 

according to range-map to produce novel BTF image of 

arbitrary size.

� arbitrary size BTF synthesis

� very slow, low BTF compression

[Magda & Kriegman 06] – separate geometric information �

layered volumetric model of material structure, and reflectance 

data � Lafortune BRDF model.

� high compression, easy BTF interpolation

� Number of layers and height of the sample 

� set explicitly, high grazing angles artifacts

[Liu et al. 01]

[Magda et al. 06]
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Combining Geometry and Reflectance

[Menzel & Guthe 09] – geometric BRDFs = BTF separation to 

intuitive and online editable texture maps:

• meso & micro scale geometry � depth & tangent 2D maps

• light interactions � Ashikhmin [2006] analytic BRDF model

• segmentation to basis materials

� reasonable visual quality, high compression              , 

interactive editing without need of compression

� for opaque samples; no sub-surface scattering 

inter-reffection effects; shadows reconstructed 

from depth map; BRDF model � chromatic errors

[Menzel & Guthe 09]
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Multilevel Vector Quantization

[Havran et al. 10] – BTF multi-level vector quantization algorithm 

– BTF parameterized � set of 1D, 2D, 3D, and 4D data slices

– Multi-level code-books of slices (indices/scales).

– reconstruction � fast chained indexing in nested code-books

� high compression             , direct importance sampling support, hardware 

implementation 

� time demanding generation 

of optimized codebooks

[Havran et al. 10]
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Selected Methods Comparison

Per-view 

polynomials 
[Malzbender 01]

Per-view 

PCA 
[Sattler 03]

Per-view 

Lafortune
[FilipHaindl 04]

Entire PCA

[Koudelka 03]

Per-cluster 

PCA
[Muller 03]

10 times difference

Compression

(average)

Parameters psychophysically estimated

Analysis time 

Synthesis time

(25x25 pix.) [s]

Survey [Filip & Haindl 09]
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Conclusions on BTF Compression

• BTF � massive data � lot of redundancy

• Compression methods 

– Remove data redundancy

– Preserve perceptually important visual features

– Allow random access for fast data reconstruction

• Compression � reduction of measured data

• Synthesis � arbitrary BTF sample enlargement 

• Synthesis (usually with compression) = Modelling

• BTF data modelling � required in practical 

applications
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